A verification of regressive models based on artificial neural networks and multiple regression analysis was carried out. The analysis of the results obtained showed that artificial neural networks realizing regressive operations are useful for identifying the character of changes of additive quantities, in particular geometric dimensions and strength parameters. However, they are not suitable for identifying non-additive features, represented by tangling as well as teaseling. In this case, better predictive possibilities are provided by models based on multiple regression.
PL
Zastosowanie środowiska oprogramowania Statistica + Sztuczne Sieci Neuronowe pozwoliło na wykorzystanie sztucznych sieci neuronowych realizujących zadania regresyjne, do przewidywania właściwości fizycznych bezwęzłowych połączeń końców nitek. Bazę danych wprowadzonych do sieci zbudowano na podstawie wyznaczenia charakterystycznych wymiarów geometrycznych i właściwości wytrzymałościowych połączeń, oraz oszacowania cech nieaddytywnych, reprezentowanych przez splątanie i zmechacenie. Posłużono się sieciami typu perceptron wielowarstwowy MLP oraz sieciami neuronowymi realizującymi regresję uogólnioną GRNN. W celach porównawczych dokonano również predykcji właściwości omawianych połączeń przy użyciu regresji wielokrotnej.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.