Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  usuwanie SO2
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przedstawione wyniki badań dwustopniowej granulacji wskazują, że możliwe jest uzyskanie sorbentu wodorotlenkowego o wymaganej wielkości ziarna. W trakcie procesu scalania przy różnej ilości dodawanego lepiszcza (wody) i/lub wzroście wartości nacisku jednostkowego wywieranego na materiał następuje rozbudowa jego tekstury, co umożliwia sterowanie nią w określonych granicach. Zarówno w suchych, jak i półsuchych metodach usuwania kwaśnych zanieczyszczeń z gazów odlotowych wykorzystuje się wodorotlenek wapnia Ca(OH)₂, którego skuteczność jest większa niż sorbentów węglanowych, lecz jego zastosowanie jest ograniczone głównie zbyt dużym rozdrobnieniem będącym konsekwencją sposobu wytwarzania. Możliwość stosowania takiego sorbentu wiąże się z koniecznością odpowiedniego przygotowania, polegającego na jego scaleniu, a następnie rozdrobnieniu do odpowiednich rozmiarów narzuconych technologią spalania.
EN
Com. Ca(OH)₂ was mixed with H₂O (17.5 or 20%) and granulated under pressure 32-43 MPa (roll press). The granulate was heated at 120°C and studied for grain size distribution, structure (electron microscopy), thermal properties, sp. surface, and pore vol. The produced sorbent showed sp. surface higher than 30 m²/g and pore vol. 0.18 cm³/g.
EN
This paper reports studies on the influence of vanadium concentration on the catalytic activity of DESONOX catalysts (in DESOX reaction) based on modified montmorillonite from Jelsovy Potok. The investigation of the influence on the physicochemical properties of the catalysts on their behaviour has also been studied.
PL
Technologia wykorzystująca energię wiązki elektronów do jednoczesnego usuwania S02 i NOx ze strumienia gazów odlotowych pomyślnie przeszła stadium badań w skali pilotowej i obecnie jest wdrażana do przemysłu. Przemysłowa demonstracyjna instalacja jest w końcowej fazie budowy w Elektrowni Pomorzany, Szczecin. Na świecie podobna instalacja oczyszczająca strumień spalin o natężeniu przepływu 300 000 Nm3/godz. pracuje w Elektrowni Chengdu w Chinach. Inna przemysłowa stacja jest budowana w Nagoya, Japonia, tak więc technologia wykorzystująca energię wiązki elektronów do oczyszczania gazów spalinowych wchodzi do przemysłu.
EN
The electron-beam technology for simultaneous removal S02 and NOx from flue gases satisfactory had passed investigations in pilot plant and in present time is introduced to industry. Industrial demonstration e-b installation is in final stage of construction in Electric Power Station Pomorzany, Szczecin. In the world e-b installation capacity 300 000 Nm3/h is under operation at Changdu Power Plant in China. Another commercial plant is under construction at Nagoya, Japan. Therefore electron-beam technology come into industrial application.
4
Content available remote Niskoemisyjne spalanie węgla kamiennego z zastosowaniem katalizatorów DESONOX
84%
PL
W pracy przedstawiono wyniki badań nad wpływem modyfikacji katalizatorów typu DESONOX na wielkość emisji ditlenku siarki, powstającego w trakcie procesu spalania węgla kamiennego. Przedstawiono właściwości katalitycznych katalizatorów typu DESONOX na bazie zeolitu promowanych jonami metali przejściowych, niklu aktywnego kobaltu. Impregnacje materiału aktywnego wykonano różnymi metodami w celu określenia wpływu metody nanoszenia materiału aktywnego na nośnik na aktywność katalityczną katalizatora DESONOX.
EN
The zeolite is exemplifying promising material as the DESONOX type of catalysts. Main goal of this work is preparation of catalyst. Support was impregnated with cobalt or nickel ions by different methods: wet impregnation, double impregnation, adsorption from water and water-saccharose solution of cobalt and nickel ions. The catalysts were physical-chemical characterized (texture, structure). The catalytic properties were studied by reaction of burn with coal in the flow reactor. Hard coal from mine 'Julian' and 'Bogdanka' from Poland with or without the catalysts addition were burnt in an atmosphere of air at 1123 K during 4 hours and using an electric furnace. The mass ratio of the DESONOX catalyst added to the investigated samples of the hard coal was 1:500.
EN
Results of ChemCad©6.0 simulation have been presented on usability of natural soda ash production process waste in order to remove SO2 from flue gas. Properties and concentrations of the solutions used in this study belong to the waste stream of Eti Soda Inc., and the flue gas compositions were acquired from an existing thermal power plant. SO2 and H2O feed rates and flue gas entrance temperature to the absorption tower were optimized through the response surface methodology (RSM) in order to attain highest SO2 removal yields. It has been found that SO2 removal remained at 33.83% when the waste composition was lower than 2 wt. % while 100% SO2 removal was reached as the waste composition was increased to 8 wt. %. This result clearly demonstrates that treatment of natural soda ash production process waste can be done safely and economically while serving as an SO2 removal agent at the same time.
EN
Combustion of hard coal causes emission of gaseous chemicals (SO2, NOx), airborne particles and fly ashes into the atmosphere. The catalytic process of SO2 removal from combustion gases takes place on the grain plane of hard coal. The method proposed for the removal of SO2 from combustion gases is quite different from the classical wet desulphurization methods. This solution eliminates the technically complicated wet desulphurization of exhausts: sulphur within the hard coal reacts with catalyst compounds, which enriches the ashes with sulphates. Technical research has shown that the DESONOX type catalyst causes the lowering of both sulphur dioxide and nitrogen oxide emission from the exhaust coming from combusting the solid fuels. This document presents only the DESOX reactions using the DESONOX type catalysts. This paper reports on the studies concerning the methods of the DESONOX catalysts preparation and their influence on the amount of the generated sewage and on the catalytic activity of a number of DESONOX catalysts (during the course of the DESOX reaction). The results of the research on the influence of the catalysts physicochemical properties on their activity are also reported.
EN
This review describes current issues concerning electron beam technology for the purification of flue gas from a coal-fired boiler. Fundamental studies of this technology were performed in a pilot plant at Kaweczyn Thermal Power Station. It is a dry scrubbing process ensuring the simultaneous removal of SO2 and NOx with high removal effciency in one step and the generation of a usable byproduct. NOx removal is performed by a radiation-induced process and its effciency depends mainly on absorbed dose and inlet NOx concentration. Higher gas temperature and multistage flue gas irradiation enhance NOx removal. The synergistic effect of high SO2 concentration on NOx removal was observed. The SO2 removal is based on two pathways: a thermal process (reaction of SO2 with ammonia in a moist environment) and a radiation-induced process. Its effciency depends mainly on ammonia stoichiometry and irradiated gas temperature and humidity. SO2 removal increases sharply as the irradiation dose increases to 8 kGy and then saturation is reached. The byproduct obtained can be used as an agricultural fertilizer or as a component for producing commercial NPK fertilizer. This technology has been already implemented on a full industrial scale at ”Pomorzany” EPS. This installation purifies up to 270,000 Nm3/h of flue gas from two coal-fired Benson boilers. The highest SO2 removal effciency obtained reaches 95% while for NOx it reaches 75%. Two-stage, longitudinal irradiation of flue gas enhances NOx removal effciency and reduces energy consumption in the process. During pilot plant operation it was proved that electron beam technology can remove SO2 and NOx simultaneously in a wide concentration range of SO2 (250...3,000 ppmv) and NOx (140...280 ppmv) with high effciency. New industrial implementations of this technology have been introduced in China and Bulgaria. This technology is designed for existing plants as a retrofit application as well as for new facilities.
EN
The results of pilot plant investigations of simultaneous removal of NOx, SO2 and Hg from flue gas with ozone as the oxidizing agent and the spray tower absorber with NaOH solution as the absorbent have been presented. Flue gas was delivered into the pilot plant at the flow rate of 200 m3/h from the coal fired OP-430 boiler. The effectiveness of NOx removal was over 95% when the molar ratio O3/NO reached 2.0. Sulfur dioxide was practically completely washed out from flue gas in the absorber at the liquid-to-gas ratio 7.5 dm3/m3. The effectiveness of Hg removal in the studied system was approximately 80%. It was pointed out that CO concentration in flue gas could considerably increase the ozone consumption. The effect of carbon dioxide in flue gas on the chemistry of absorption due to hydroxides conversion into carbonates and bicarbonates was noticed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.