A mathematical model known as one-order one-variable grey differential equation model GM(1, 1) has been herein employed successfully for the ultra short-term (<10days) predictions of universal time (UT1-UTC). The results of predictions are analyzed and compared with those obtained by other methods. It is shown that the accuracy of the predictions is comparable with that obtained by other prediction methods. The proposed method is able to yield an exact prediction even though only a few observations are provided. Hence it is very valuable in the case of a small size dataset since traditional methods, e.g., least-squares (LS) extrapolation, require longer data span to make a good forecast. In addition, these results can be obtained without making any assumption about an original dataset, and thus is of high reliability. Another advantage is that the developed method is easy to use. All these reveal a great potential of the GM(1, 1) model for UT1-UTC predictions.
Precise positioning and navigation on the Earth’s surface and in space require accurate earth orientation parameters (EOP) data and predictions. In the last few decades, EOP prediction has become a subject of increased attention within the international geodetic community, e.g., space agencies, satellite operators, researchers studying Earth rotation dynamics, and users of navigation systems. Due to this fact, many research centres from around the world have developed dedicated methods for the forecasting of EOP. An assessment of the various EOP prediction capabilities is currently being pursued in the frame of the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC), which began in September 2021 and will be continued until the end of the year 2022. The new campaign was prepared by the EOP PCC Office run by Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN) in Warsaw, Poland, in cooperation with GeoForschungsZentrum (GFZ) and under the auspices of the International Earth Rotation and Reference Systems Service (IERS). In this paper, we provide an overview of the 2nd EOP PCC five months after its start. We discuss the technical aspects and present statistics about the participants and valid prediction files received so far. Additionally, we present the results of preliminary comparisons of different reference solutions with respect to the official IERS 14 C04 EOP series. Root mean square values for different solutions for polar motion, length of day, and precession-nutation components show discrepancies at the level from 0.04 to 0.36 mas, from 0.01 to 0.10 ms, and from 0.01 to 0.18 mas, respectively.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A new method is developed for prediction of UT1. The method is based on construction of a general polyharmonic model of the Earth rotation parameters variations using all the data available for the last 80-100 years, and modified autoregression technique. A rigorous comparison of UT1 predictions computed at SNIIM with the prediction computed by IERS (USNO) in 2008-2009 has shown that proposed method provides better accuracy both for ultra-short and long term predictions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.