The same speech sounds (phones) produced by different speakers can sometimes exhibit significant differences. Therefore, it is essential to use algorithms compensating these differences in ASR systems. Speaker clustering is an attractive solution to the compensation problem, as it does not require long utterances or high computational effort at the recognition stage. The report proposes a clustering method based solely on adaptation of UBM model weights. This solution has turned out to be effective even when using a very short utterance. The obtained improvement of frame recognition quality measured by means of frame error rate is over 5%. It is noteworthy that this improvement concerns all vowels, even though the clustering discussed in this report was based only on the phoneme a. This indicates a strong correlation between the articulation of different vowels, which is probably related to the size of the vocal tract.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule przedstawiono wyniki badań automatycznego systemu rozpoznawania mówcy (ASR – ang. Automatic Speaker Recognition), przeprowadzonych na podstawie komercyjnej bazy głosów TIMIT. Badania prowadzone były pod kątem zastosowania ASR jako systemu automatycznego rozpoznawania rozmówcy telefonicznego. Przedstawiono również wpływ liczebności bazy głosów oraz stopień oddziaływania kompresji stratnej MP3 na skuteczność rozpoznawania mówcy.
EN
The article presents the results of tests of an automatic speaker recognition system (ASR) conducted on the basis of the TIMIT commercial voice database. The research was conducted with the aim of using ASR as a system for automatic recognition of telephone callers. The impact of the number of voices in the database and the effect of lossy MP3 compression on the effectiveness of speaker recognition has also been shown.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.