Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  unconfined compressive strength
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 70, nr 4
art. no. e141593
EN
Evaluating soil strength by geophysical methods using P-waves was undertaken in this study to assess the effects of changed binder ratios on stabilization and compression characteristics. The materials included dredged sediments collected in the seabed of Timrå region, north Sweden. The Portland cement (Basement CEM II/A-V, SS EN 197-1) and ground granulated blast furnace slag (GGBFS) were used as stabilizers. The experiments were performed on behalf of the Svenska Cellulosa Aktiebolaget (SCA) Biorefinery Östrand AB pulp mill. Quantity of binder included 150, 120 and 100 kg. The properties of soil were evaluated after 28, 42, 43, 70, 71 and 85 days of curing using applied geophysical methods of measuring the travel time of primary wave propagation. The P-waves were determined to evaluate the strength of stabilized soils. The results demonstrated variation of P-waves velocity depending on stabilizing agent and curing time in various ratios: Low water/High binder (LW/HB), High water/Low binder (HW/LB) and percentage of agents (CEM II/A-V/GGBFS) as 30%/70%, 50%/50% and 70%/30%. The compression characteristics of soils were assessed using uniaxial compressive strength (UCS). The P-wave velocities were higher for samples stabilized with LW/HB compared to those with HW/LB. The primary wave propagation increased over curing time for all stabilized mixes along with the increased UCS, which proves a tight correlation with the increased strength of soil solidified by the agents. Increased water ratio gives a lower strength by maintained amount of binder and vice versa.
EN
This article proposes a predictive model for the compressive strength (UCS) of lime-stabilized clay soils reinforced with polypropylene fibers (PPF) using the extreme gradient boosting (XGBoost) algorithm. The research indicates that the developed model is highly effective and can serve as a reliable tool for anticipating the UCS of these specific soils. A comparison between experimental data and model predictions suggests that it can effectively elucidate the impact of the combined effect of lime and PPF on the compressive strength of clay soils, thus avoiding the need for new experiments to formulate new compositions. Furthermore, a parametric analysis reveals the benefits of fiber incorporation, particularly at an optimum lime content of 6% dosage. The results also show that an optimal fiber content of 1.25% and a length of 18 mm are essential for achieving satisfactory results. These findings have significant implications for the planning and implementing fibre treatments, allowing for considerably enhancing soil strength. They provide a solid foundation for more precise and effective interventions in the lime stabilization of clay soils, thus paving the way for more efficient practices in this area of research.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.