Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ultraproduct
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Notes on the Krupa-Zawisza ultrapower of self-adjoint operators
100%
|
|
tom Vol. 34, Fasc. 1
147--159
EN
Let ω ∈ βN \ N be a free ultrafilter on N. It is known that there is a difficulty in constructing the ultrapower of unbounded operators. Krupa and Zawisza gave a rigorous definition of the ultrapower Aω of a self-adjoint operator A. In this note, we give an alternative description of Aω and the Hilbert space H(A) on which Aω is densely defined. This provides a criterion to determine a representing sequence (ξn)n of a given vector ξ ∈ dom(Aω) which has the property that Aωξ = (Aξn)ω holds. An explicit core for Aω is also described.
2
Content available remote A note on Łoś theorem without the Axiom of Choice
70%
|
2024
|
tom Vol. 72, no 1
17--44
EN
We study some topics around Łoś’s theorem without assuming the Axiom of Choice. We prove that Łoś’s fundamental theorem on ultraproducts is equivalent to a weak form that every ultrapower is elementarily equivalent to its source structure. On the other hand, it is consistent that there is a structure M and an ultrafilter U such that the ultrapower of M by U is elementarily equivalent to M, but the fundamental theorem for the ultrapower of M by U fails. We also show that weak fragments of the Axiom of Choice, such as the Countable Choice, do not follow from Łoś’s theorem, even assuming the existence of non-principal ultrafilters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.