Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  układ przeniesienia napędu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
PL
Układ przeniesienia napędu maszyn to podzespoły mechaniczne mieszczące się między silnikiem napędowym a mechanizmem roboczym. Zadaniem układu przeniesienia napędu jest dostosowanie charakterystyki użytego silnika napędowego do wymogów ruchu maszyny. Dla pojazdów zadania te obejmują: łagodne ruszanie z miejsca i zatrzymywanie się, jazdę w ruchu miejskim oraz jazdę po autostradach.
PL
W referacie przedstawiono krótkie wprowadzenie w diagnostykę drganiową maszyn w tym ich układów przeniesienia napędu. Badania przeprowadzono dla środka transportu przemysłowego jakim jest suwnica pomostowa natorowa wykorzystywana w hali maszyn Politechniki Śląskiej. Zaprezentowano tor pomiarowy oraz otrzymane wyniki w trakcie eksperymentu czynnego. Przedstawiono przyspieszenia drgań oraz widma sygnałów zarejestrowane w trakcie pracy na podporze łożyskowej bębna linowego.
EN
The paper presents a short introduction to vibrodiagnostics of equipment including powertrain systems. The study was conducted for the means of transport which is an industrial overhead travelling crane used in the machine hall of the Silesian University of Technology. Measuring system and the results obtained during the active experiment was presented. The vibration accelerations on the rope drum bearing support and the spectrum of this recorded signals were showed.
PL
W pracy przedstawiono metodę określenia sprawności układu przeniesienia napędu, którą zweryfikowano na podstawie wyników przeprowadzonych badań rozpływu energii samochodu ciężarowo-terenowego STAR 266M2. Zwiększenie sprawności jest równoznaczne ze zmniejszeniem zużycia energii, a dążenie do jak najwyższej sprawności wymaga redukcji strat. Sprawność tego układu ma bezpośredni wpływ na zużycie energii w formie paliwa, pobieranego przez silnik. Uzyskane wyniki badań mogą ułatwić identyfikację miejsc występowania strat energii w układzie napędowym pojazdów będących w procesie eksploatacji.
XX
A method for the determination of transmission system efficiency verified on basis of energy propagation results for the cargo-off-road STAR 266M2 car is presented in the paper. An increase of efficiency is the equivalent to a decrease of energy consumption. A striving for the highest efficiency requires the reduction of losses. The efficiency of such system has a direct impact on energy consumption in a form of fuel amount drawn by the motor. The obtained results can help to identify the sites of energy losses in a vehicle drive during their exploitation.
4
84%
EN
Kinetic energy recovery systems (KERS) placed on the rear non-motored axle of a small, lightweight, forward drive passenger car with a turbocharged direct injection (TDI) internal combustion engine (ICE) is possibly the best solution presently available to dramatically improve the fuel economy of today’s passenger cars within today’s constraints of budget, weight, packaging, simple construction, easy operation and best life cycle environmental friendliness. The vehicle may be built by using different KERS designs, from the purely mechanical M-KERS based on a continuously variable transmission and a flywheel permitting round trip regenerative braking efficiencies above 80% but requesting additional research and development, to purely electric E-KERS systems based on an electric motor/generator and a battery with off the shelf components permitting round trip regenerative braking efficiencies above 70% but having however the traction battery as the weak part of the design, to mixed mechanical-electric systems EM-KERS adopting an electromechanical flywheel replacing the traction battery for intermediate advantages and downfalls. The engine is small displacement, small number of cylinders, high power density, turbocharged, direct injection. The TDI ICE may be gasoline or diesel, with higher power density but lower fuel conversion efficiency or vice-versa, with or without start-stop capability, to deliver high part load efficiencies over the reduced off idle operating points of a driving cycle. Downsizing, down speeding and KERS assistance permits to reduce the operation of the thermal engine over non-efficient BMEP x speed map points in addition to the thermal engine energy supply reduction by regenerative braking. The front wheel drive vehicle behaves as a four wheel drive during the driving characterized by accelerations and decelerations, with the thermal engine torque boosted by the KERS. The proposed vehicles may have fuel economy figures well below 2.5 litres/100 km covering a modified NEDC where the unrealistic sharp deceleration from 120 km/h to rest at the end of the extra urban sector is followed by another urban sector as the first four ones.
EN
This paper present a simple concept hybrid system with planetary gear trains. The transmissions combine the power from two sources, a gasoline engine and electric motor. This solution maximize the performance of combustion engine and reduce emission.
EN
In the future, the simultaneous reduction of pollutant and CO2 emissions will require significantly enhanced powertrain functionalities that cannot only be adequately represented by the ICE (internal combustion engine) alone. Both automated transmissions and especially powertrain electrification can help to meet efficiently those extended requirements. The extended functionalities are no longer applied exclusively with the ICE itself ("Fully Flexible Internal Combustion Engine"), but distributed across the entire powertrain ("Fully Flexible Powertrain"). In addition, the powertrain will be fully networked with the vehicle environment and thus will utilize all data that are useful for emission and consumption-optimized operation of the ICE. Combustion engine and electrification often complement each other in a synergetic way. This makes it extremely sensible for the combustion engine to evolve in future from a "single fighter" to a "team player". If one compares the requirements of such an ICE with the definition of Industry 4.0, then there are extensive correspondences. Thus, it seems quite opportune to call such a fully networked combustion engine designed to meet future needs as “Internal Combustion Engine 4.0 (ICE 4.0)”. This even more so, as such a name can also be derived from the history: e.g. ICE 1.0 describes the combustion engines of the first mass-produced vehicles, ICE 2.0 the combustion engines emission-optimized since the 1960s and ICE 3.0 the highly optimized "Fully Flexible Combustion Engine", which currently offers a high torque and performance potential combined with low fuel consumption and pollutant emissions. In addition to further improvements in fuel consumption, the "Combustion Engine 4.0" offers such a low level of pollutant emissions that can best be described as "Zero Impact Emission". This means that such future ICE´s will no longer have a negative impact on the imission situation in urban areas. With the e-fuels topic, the ICE also has the potential to become both CO2- and pollutant-neutral in the medium and long term. This means that the ICE - also in passenger cars - will continue to be an essential and necessary cornerstone for future powertrain portfolios for the next decades.
PL
W kopalniach głębinowych wydobywających surowce mineralne, do transportu materiałów i ludzi stosowane są lokomotywy spalinowe, w których transmisja momentu obrotowego z silnika diesla na koła napędowe odbywa się za pomocą mechanicznego lub hydrostatycznego układu przeniesienia napędu. W artykule omówiono rozwiązania układów napędowych lokomotyw dołowych, zaprojektowanych w ITG KOMAG, w których zastosowano wyżej wymienione układy przeniesienia napędu zwracając uwagę na wady oraz zalety takich rozwiązań.
EN
In underground mines, diesel locomotives are used for transportation of people and materials, transmission of torque from diesel engine to driving wheels is realized through mechanical or hydrostatic drive transmission system. Solutions of the driving systems in underground diesel locomotives, designed in KOMAG, in which the mentioned transmission systems are used, are discussed indicating advantages and disadvantages of such solutions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.