Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  układ odniesienia kursu położenia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this work, we present a failure detection system in sensors of any robot. It is based on the k-fold cross-validation approach and built from N neural networks, where N is the number of signals read from sensors. Our tests were carried out using an unmanned aerial vehicle (UAV, quadrocopter), where signals were read from three sensors: accelerometer, magnetometer and gyroscope. Artificial neural network was used to determine Euler angles, based on signals from these sensors. The presented system is an extension of the system that we proposed in one of our previous papers. The improvement shown in this work took place on two levels. The first one was related to improvement of a neural network՚s reproduction quality – we have replaced a recurrent neural network with a convolutional one. The second level was associated with the improvement of the validation process, i.e. with adding some new criteria to check the values of Euler՚s angles determined by the convolutional neural network in subsequent time steps. To highlight the proposed system improvement we present a number of indicators such as RMSE, NRMSE and NDR (Normalized Detection Ratio).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.