We propose a new type of Proportional Integral (PI) state observer for a class of nonlinear systems in continuous time which ensures an asymptotic stable convergence of the state estimates. Approximations of non-linearity are not necessary to obtain such results, but the functions must be, at least locally, of the Lipschitz type. The obtained state variables are exact and robust against noise. Naslin’s damping criterion permits synthesizing gains in an algebraically simple and efficient way. Both the speed and damping of the observer response are controlled in this way. Model simulations based on a Sprott strange attractor are discussed as an example.
A method for decentralized stabilization of fractional positive descriptor linear systems is proposed. Necessary and sufficient conditions for decentralized stabilization of fractional positive descriptor linear systems are established. The efficiency of the proposed method is demonstrated on a numerical example.
The problem of state estimation of a continuous-time stochastic process using an Asynchronous Distributed multi-sensor Estimation (ADE) system is considered. The state of a process of interest is estimated by a group of local estimators constituting the proposed ADE system. Each estimator is based, e.g., on a Kalman filter and performs single sensor filtration and fusion of its local results with the results from other/remote processors to compute possibly the best state estimates. In performing data fusion, however, two important issues need to be addressed namely, the problem of asynchronism of local processors and the issue of unknown correlation between asynchronous data in local processors. Both the problems, along with their solutions, are investigated in this paper. Possible applications and effectiveness of the proposed ADE approach are illustrated by simulated experiments, including a non-complete connection graph of such a distributed estimation system.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We consider linear 2-D systems of Fornasini-Marchesini type in the continuous-time case with non-constant coefficients. Using an explicit representation of the solutions by utilizing the Riemann-kernel of the equation under consideration, we obtain controllability and observability criteria in the case of the inhomogeneous equation, where control is obtained by choosing the inhomogeneity appropriately, but also for the homogeneous equation, where control is obtained by steering with Goursat data. The optimal control problem with a quadratic cost functional is also solved.
The paper presents new concepts of the identification method based on modulating functions and exact state observers with its application for identification of a real continuous-time industrial process. The method enables transformation of a system of differential equations into an algebraic one with the same parameters. Then, these parameters can be estimated using the least-squares approach. The main problem is the nonlinearity of the MISO process and its noticeable transport delays. It requires specific modifications to be introduced into the basic identification algorithm. The main goal of the method is to obtain on-line a temporary linear model of the process around the selected operating point, because fast methods for tuning PID controller parameters for such a model are well known. Hence, a special adaptive identification approach with a moving window is proposed, which involves using on-line registered input and output process data. An optimal identification method for a MISO model assuming decomposition to many inner SISO systems is presented. Additionally, a special version of the modulating functions method, in which both model parameters and unknown delays are identified, is tested on real data sets collected from a glass melting installation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.