The aim of this notę is to obtain a best proximity pair theorem which contains a recent result of Kirk, Reich and Veeramani (Numer. Funct. Anal. Optim., 24 (2003), 851-862) as a special case.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, at first we prove that the existence of best proximity points for cyclic nonexpansive mappings is equivalent to the existence of best proximity pairs for noncyclic nonexpansive mappings in the setting of strictly convex Banach spaces by using the projection operator. In this way, we conclude that the main result of the paper [Proximal normal structure and nonexpansive mappings, Studia Math. 171 (2005), 283–293] immediately follows. We then discuss the convergence of best proximity pairs for noncyclic contractions by applying the convergence of iterative sequences for cyclic contractions and show that the convergence method of a recent paper [Convergence of Picard's iteration using projection algorithm for noncyclic contractions, Indag. Math. 30 (2019), no. 1, 227–239] is obtained exactly from Picard’s iteration sequence.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Some coincidence point theorems for R-subweakly commuting mappings satisfying a general contractive condition are proved. As applications, some best proximity pair results are also obtained and several related results in the literature are extended to a new class of noncommuting mappings.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.