Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  twierdzenie o bliskości par
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A best proximity pair theorem
100%
EN
The aim of this notę is to obtain a best proximity pair theorem which contains a recent result of Kirk, Reich and Veeramani (Numer. Funct. Anal. Optim., 24 (2003), 851-862) as a special case.
EN
In this study, at first we prove that the existence of best proximity points for cyclic nonexpansive mappings is equivalent to the existence of best proximity pairs for noncyclic nonexpansive mappings in the setting of strictly convex Banach spaces by using the projection operator. In this way, we conclude that the main result of the paper [Proximal normal structure and nonexpansive mappings, Studia Math. 171 (2005), 283–293] immediately follows. We then discuss the convergence of best proximity pairs for noncyclic contractions by applying the convergence of iterative sequences for cyclic contractions and show that the convergence method of a recent paper [Convergence of Picard's iteration using projection algorithm for noncyclic contractions, Indag. Math. 30 (2019), no. 1, 227–239] is obtained exactly from Picard’s iteration sequence.
3
72%
EN
Some coincidence point theorems for R-subweakly commuting mappings satisfying a general contractive condition are proved. As applications, some best proximity pair results are also obtained and several related results in the literature are extended to a new class of noncommuting mappings.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.