Effective Hamiltonian models predict non-universal critical singularities for two-dimensional wetting transitions with long-ranged forces. We verify these predictions by studying delocalization transitions in an infinitely long Ising strip, of width L (lattice spacings), with long-ranged surface fields that have opposite sign at each surface. The extrapolated asymptotic value for the exponent β:s does not confirm to the predicted non-universality but instead approaches the same universal value representative of systems with short-ranged forces. The crossover of the scaling behaviour of the transition lines is presented. Moreover, contrary to the existing predictions, the critical wetting transition for p = 2 has been found.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.