A topological space is called connected if it is not the union of two disjoint, nonempty and open sets in this space. The standard exercises show that here the concept of open sets can be replaced by closed sets or separated sets. In this context we will discuss the definition of connected sets in topological spaces, not being the whole space with particular regard to metric spaces, without the term of subspace topology.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Quite recently, a new minimal structure m⋆H and an mn - Hg -closed set have been introduced in a previous study [T. Noiri and V. Popa, Closed sets in hereditary bi m-spaces, Questions Answers General Topol. 38 (2020), 133–142] by using two minimal structures m, n and a hereditary class H . In this paper, we introduce and investigate the notions of (m,n) - H⋆g -regularity and (m,n) - H⋆g -normality in a hereditary bi m-space (X,m,n,H) .
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.