Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  topologia Fella
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The spaces of closed convex sets in Euclidean spaces with the fell topology
100%
|
2007
|
tom Vol. 55, no 2
139-143
EN
Let ConvF(Rn) be the space of all non-empty closed convex sets in Euclidean space Rn endowed with the Fell topology. We prove that ConvF(lRn) ≈ Rn x Q for every n > 1 whereas ConvF(R) ≈ R x I.
2
100%
EN
The aim of this paper is to study uniform and topological structures on spaces of multifunctions. Uniform structures on hyperspaces compatible with the Fell, the Wijsman and the Hausdorff metric topology respectively are studied and the links between them are explored. Topologies induced by the above uniformities on spaces of multifunctions are considered and compared. Also connections between uniform convergence of multifunctions and their equi-semicontinuity are investigated.
EN
The generalized compact-open topology τc on partial continuous functions with closed domains in X and values in Y is studied. If Y is a non-countably compact Čech-complete space with a Gδ-diagonal, then τc is Čech-complete, sieve complete and satisfies the p-space property of Arhangel'skii, respectively, if and only if X is Lindelof and locally compact. Lindelofness, paracompactness and normality of τc is also investigated. New results are obtained on Čech-completeness, sieve completeness and the p-space property for the compact-open topology on the space of continuous functions with a general range Y.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.