Zaprezentowano wyniki przeprowadzonych badań nad kompozytami 2D otrzymanymi z tkaniny węglowej impregnowanej pirolitycznym węglem otrzymanym z fazy gazowej metodą P-CVI (proces pulsacyjnej chemicznej infiltracji z fazy gazowej). Celem pracy było określenie odpowiednich warunków procesu infiltracji do otrzymania materiału kompozytowego o optymalnej gęstości i małej porowatości. Oba te parametry mikrostruktury mają wpływ na właściwości mechaniczne kompozytu. W badaniach wykazano, że w miejscach przeplatania się wiązki włókien elementarnych, z której była zrobiona tkanina, pozostawały duże pustki (otwarte pory) po procesie infiltracji. Proces infiltracji nie był efektywny w przypadku porów o dużych rozmiarach.
EN
This study describes the microstructure of 2-D composite samples obtained by infiltration of porous preform made of carbon tissue with pyrolytic carbon. The P-CVI ( Pulse Chemical Vapour Inifltration) method was applied to densify the fibrous carbon substrate. The aim of this work was to analyze an optimal conditions of the infiltration process of 2D carbon tissue to obtain an optimal density and low porosity. Both these microstructure parameters affect the mechanical properties of materials. It was observed that in the sites of fibers weaves, significant voids (open pores) remained after the infiltration process. The applied process of infiltration did not effective to fill in the pores of higher size.
The self-heating effect occurring in polymeric composites during cyclic loading or vibrations is a dangerous phenomenon which affects intensification of mechanical degradation processes and shortening of structural residual life. During this process, heat is generated due to hysteretic behavior of a polymeric matrix, and the growing surface temperature may initiate the most dangerous mode of self-heating effect – the non-stationary one. During non-stationary self-heating the heating-up process dominates mechanical degradation and causes its significant intensification and sudden failure. Besides the loading conditions, several other factors influence on the self-heating process. In this paper, the influence of reinforcing material as well as its content in the composite is analyzed in the light of self-heating effect. The results of the performed experimental studies show that these material properties have a great impact on intensity of self-heating effect. This observation allows for better understanding the mechanics of structural degradation of fabric-reinforced composites subjected to cyclic loading with self-heating effect occurrence. The obtained results might be helpful in development of new industrial composites, which will be characterized by high thermal conductivity and effectively release generated heat to the environment, increasing the operational safety of composite elements working in mentioned loading conditions.
PL
Efekt samorozgrzania, powstający w kompozytach polimerowych podczas obciążeń cyklicznych lub drgań, jest niebezpiecznym zjawiskiem, które powoduje intensyfikację procesów mechanicznej degradacji oraz skrócenie żywotności struktur. Podczas tego procesu ciepło jest generowane wskutek histerezowego zachowania osnowy polimerowej, a wzrastająca temperatura na powierzchni może inicjować najbardziej niebezpieczną postać efektu samorozgrzania – niestacjonarną. Podczas samorozgrzania niestacjonarnego proces nagrzewania się staje się dominujący w stosunku do degradacji mechanicznej i powoduje jego znaczną intensyfikację oraz szybkie zniszczenie. Oprócz warunków obciążenia, niektóre inne czynniki wpływają na proces samorozgrzania. W niniejszym artykule wpływ materiału wzmocnienia oraz jego zawartości w kompozycie został przeanalizowany w świetle efektu samorozgrzania. Wyniki przeprowadzonych badań eksperymentalnych wskazują na znaczący wpływ właściwości materiałów umocnienia na intensywność efektu samorozgrzania. Taka obserwacja pozwala na lepsze zrozumienie mechaniki degradacji strukturalnej kompozytów wzmacnianych tkaninami poddanych obciążeniom cyklicznym z występowaniem efektu samorozgrzania. Otrzymane wyniki mogą być pomocne przy opracowaniu nowych kompozytów konstrukcyjnych, które będą charakteryzować się wysoką przewodnością cieplną i skutecznie odprowadzać generowane ciepło do środowiska, zwiększając bezpieczeństwo użytkowania elementów kompozytowych pracujących w wymienionych warunkach obciążeń.
W artykule przedstawiono strukturę kompozytów uzyskanych w procesie infiltracji ciekłym stopem Al tkanin węglowych typu 2D oraz 3D. W badaniach zastosowano stop aluminium z krzemem i manganem AlSi9Mn (trimal 37 -TR37). Jako zbrojenie wykorzystano tkaniny węglowe przygotowane z włókien, na których zastosowano bariery ochronne w postaci powłoki niklowej, powłoki z węglika krzemu oraz węgla pyrolitycznego. Preformy węglowe wykonano w Instytucie Konstrukcji Lekkich i Przetwórstwa Tworzyw Sztucznych (ILK TU Dresden) oraz w Instytucie Technologii i Systemów Ceramicznych (Fraunhofer - IKTS). Proces infiltracji tkanin węglowych przeprowadzono z wykorzystaniem ciśnieniowo-próżniowej infiltracji na prasie Degussa oraz gazowo-ciśnieniowej infiltracji (GPI) w autoklawie zaprojektowanym i wykonanym w Katedrze Technologii Materiałów w Politechnice Śląskiej. Wytworzone kompozyty charakteryzowały się regularnym kształtem, bez powierzchniowych wad odlewniczych. Najlepsze połączenie komponentów, uzyskano w kompozycie AlSi9Mn/Cf(Ni) otrzymanym w procesie gazowo-ciśnieniowej infiltracji (GPI). Analiza mikrostruktury oraz obserwacja przełomów, nie wykazała oddzielania włókien od osnowy i ich wyciągania. Zniszczenie kompozytu następowało poprzez włókna. Przeprowadzone badania struktury nie wykazały obecności węglika aluminium na granicy włókno-osnowa, a także w osnowie, co pozwala przypuszczać, że kompozyty będą charakteryzowały dobre właściwości mechaniczne. Wymaga to jednak dalszej weryfikacji eksperymentalnej planowanej w kolejnym etapie badań, w projekcie realizowanym w ramach programu DFG: „Kompozyty o osnowie aluminiowej ze wzmocnieniem tekstylnym typu 3-D (3D-CF/Al-MMC) dla elementów podlegających złożonym obciążeniom w przemyśle samochodowym i w budowie maszyn”.
EN
The structure of the composites obtained in infiltration processes 2D and 3D carbon preform by liquid Al alloy have been presented in this paper. An aluminum alloy with silicon and manganese AlSi9Mn (trimal 37-TR37) was applied in the researches. As the reinforcement used carbon perform prepared with various protective barriers such as the nickel coating, the coating of silicon carbide and pyrolytic carbon coating. Carbon preforms was prepared at the Institute for Lightweight Structures and Polymer Technology (ILK TU Dresden) and at the Institute of Technology and Ceramic Systems (Fraunhofer-IKTS). The process of infiltration of carbon perform by liquid aluminium alloy was carried out using a pressure-vacuum infiltration on the Degussa press and gas-pressure infiltration (GPI) in an autoclave designed and built at the Department of Materials Technology at the Silesian University of Technology. The obtained composites were characterized by a regular shape, with no surface casting defects. The best connection of components was observed in AlSi9Mn/Cf(Ni) composite, obtained by gas-pressure infiltration method (GPI). On metallographic specimens, good interface between fibres and the aluminium matrix were observed. The obtained research results justify the application of nickel coatings on the fibres. During the failure crack propagated across fiber. There was no presence of aluminum carbide on the fiber-matrix. It can be assumed that the composite will be characterized by the good mechanical properties. However, this requires further experimental verification planned in the next stage of research, in the project realized within the DFG program: "3D textile reinforced aluminium matrix composites for complex loading situations in lightweight automobile and machine parts".
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Lightning strike protection is one of the crucial structural demands for aircraft composites addressed to their integrity and durability after a strike. When the lightning strikes a classic composite structure, the generated heat from electrical resistance as well as mechanical impulse resulting from acoustic wave propagation, might cause serious damage. Currently used metallic meshes and foils immersed in composite structures are effective in dissipating lightning charges and generated heat, however, such a solution has numerous disadvantages like increasing mass, problems with adhesion on the metal/polymer interface, complicated manufacturing technology, etc. Therefore, a fully organic conductive composite was developed as an alternative to current solutions. After a lightning strike the developed composite should not only effectively conduct and dissipate the electrical charge and generated heat, but also stop burning, which appears due to very high temperature values in the vicinity of the strike area. In this study, flammability tests were performed for a classic carbon fabric-reinforced composite as well as for the developed conductive polymer and carbon fabric-reinforced composite based on this polymer for comparative purposes, with measurement of the combustion temperature. The obtained results show that the developed composite is characterized by sufficiently low flammability, however, further studies will be focused on further improvement of flame retardancy.
PL
Ochrona odgromowa jest jednym z ważniejszych wymagań strukturalnych stawianych kompozytom lotniczym, odnoszących się do ich integralności oraz trwałości po uderzeniu pioruna. Gdy piorun uderza w klasyczne struktury kompozytowe, ciepło generowane z oporu elektrycznego oraz impuls mechaniczny, wynikający z propagacji fali akustycznej, może spowodować poważne uszkodzenia. Obecnie stosowane metalowe siatki i folie zatopione w strukturach kompozytowych są efektywne w rozpraszaniu ładunków piorunowych i generowanego ciepła, jednak takie rozwiązanie posiada szereg wad, jak wzrost masy, problemy z adhezją na granicy ośrodków metal/polimer, skomplikowana technologia wytwarzania itd. Dlatego został opracowany w pełni organiczny kompozyt przewodzący jako alternatywa dla obecnych rozwiązań. Po uderzeniu pioruna opracowany kompozyt powinien nie tylko efektywnie przewodzić i rozpraszać ładunek elektryczny i generowane ciepło, ale także zatrzymać płonięcie, powstające w wyniku bardzo dużych wartości temperatury w otoczeniu miejsca uderzenia. W niniejszej pracy w celach porównawczych badania palności przeprowadzono dla klasycznego kompozytu wzmacnianego tkaniną węglową oraz opracowanego polimeru i kompozytu wzmacnianego tkaniną węglową na jego bazie z pomiarem temperatury spalania. Otrzymane wyniki wykazały, że opracowany kompozyt charakteryzuje się stosunkowo niską palnością, jednak przyszłe badania będą skupione na dalszej poprawie ognioodporności.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule zaprezentowano siatki tekstylne z włókien węglowych i szklanych jako alternatywne zbrojenie elementów betonowych. Opisano ich strukturę i właściwości oraz charakterystykę jako produktu znajdującego się pomiędzy krótkimi włóknami do fibrobetonu a typowymi prętami zbrojeniowymi z materiałów kompozytowych FRP (Fibre Reinforced Polymers). Przedstawiono obszary zastosowania betonu ze zbrojeniem z siatek tekstylnych do: konstrukcji kładek pieszo-rowerowych i mostów; produkcji elementów fasadowych i wielowarstwowych paneli ściennych typu „sandwich” oraz do konstrukcji kopuł i elementów przekryć o skomplikowanej geometrii i zakrzywionej powierzchni. Opisano kierunki rozwoju betonu ze zbrojeniem tekstylnym, prowadzone badania i nowe obszary zastosowania. Wymieniono również dostępne w literaturze modele inżynierskie oraz wytyczne do wymiarowania konstrukcji ze zbrojeniem tekstylnym.
EN
This review article presents textile grids made of carbon and glass fibres as an alternative reinforcement for concrete elements. The structure and properties of textile reinforcement and the characteristics of textile reinforced concrete as a material located between fiber reinforced concrete and concrete with reinforcement bars made of FRP (Fibre Reinforced Polymers) are described. The article presents main areas of application of concrete with textile reinforcement: for the construction of footbridges and bridges, for the production of façade elements and multilayer sandwich wall panels, and as reinforcement for the construction of domes and elements with complex geometry and curved surfaces. The directions of development of textile reinforced concrete, current research and possible further areas of application are briefly described. It also lists models available in the literature for the design of structures with textile reinforcement.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.