Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thermodynamic cycle
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Thermal analysis of car air cooler
100%
EN
People more and more time spend in vehicles (cars, trains, planes, buses or subway). This is the reason why the thermal comfort has more and more paid attention. In one hand people try to make comfort (in each situation) whatever they are at home, office or in car. In the other hand the thermal conditions in the cabin of vehicles directly influences on the driver's and passengers safety. The investigations presented in this paper are the part of larger project, which assumes complex modelling of thermal state of car interior. First part assumes creation of CFD model of car interior. Second part is thermodynamic modelling of air cooling unit in order to estimate the influence of basic cabin parameters on the A/C unit COP, power consumption of the unit and fuel consumption of the vehicle. In the paper thermodynamic analysis of car air cooler is presented. Typical refrigerator cycles are studied: one with uncontrolled orifice and non controlled compressor, second with thermostatic controlled expansion valve and externally controlled compressor. The influence of refrigerant charge and the inlet air temperature on the coefficient of performance, exergy efficiency, heat flux and temperature in evaporator and compressor net power were investigated. The impact of improper refrigerant charge on the performance of A/C systems was also checked.
EN
Internal combustion engines, used for driving of different cars, occur not only at the full load, but mostly at the part load. The relative load exchange work at the full (nominal) engine load is significant low. At the part load of the IC engine his energy efficiency r)e is significantly lower than in the optimal (nominal field) range of the performance parameters. One of the numerous reasons of this effect is regular growing of the relative load exchange work of the IC engine. The load exchange work of IC engine essentially determines the effective engine efficiency. It is directly connected with the quantitative regulation method common used in the IC engines. From the thermodynamic point of view - the main reason of this effect is the throttling process (causing exergy losses) occurring in the inlet and outlet channels. The known proposals for solving of this problem are based on applying of the fully electronic control of the motion of inlet, outlet valves and new reference cycles. The independent actuating (steerage) procedures of the ICE inlet valves should assure the adequate mass of the fresh charge, while procedures of the outlet valves are focused on the optimal exhaust gas recirculation rate, according to the engine load. The idea presented in the paper leads to diminishing the charge exchange work of the IC engines. The mentioned above problem can be solved using presented in the paper a new concept of the reference cycle (called as eco-cycle) of IC engine.
|
|
tom nr 9
72-79
PL
W celu zapewnienia układowi chłodniczemu jego najwyższej sprawności, musimy znać docelową wartość efektywności energetycznej systemu. Tym docelowym i jak dotąd nieosiągalnym celem dla każdego konstruktora układów chłodniczych jest układ Carnota.
EN
The Organic Flash Cycle (OFC) is suggested as a vapor power cycle that could potentially improve the efficiency of utilization of the heat source. Low and medium temperature finite thermal sources are considered in the cycle. Additionally the OFC’s aim is to reduce temperature difference during heat addition. The study examines 2 different fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC). Preliminary results show that ethanol and water are better suited for the ORC and OFC due to higher power output. Results also show that the single flash OFC achieves better efficiencies than the optimized basic ORC. Although the OFC improves the heat addition exergetic efficiency, this advantage was negated by irreversibility introduced during flash evaporation.
PL
W artykule omówiono stanowisko laboratoryjne do automatycznego wyznaczania parametrów i charakterystyk termodynamicznych sprężarki tłokowej, które może być również wykorzystane do badania innych typów obiektów, w których zachodzą przemiany termodynamiczne względnie dla celów dydaktycznych. Omówiono opracowane metody wyznaczania parametrów termodynamicznych, zastosowane układy kondycjonowania sygnałów oraz sposoby kalibracji torów pomiarowych. Opracowany system umożliwia pomiar chwilowych wartości temperatury, objętości czynnej w cylindrze sprężarki, ciśnień oraz przepływu powietrza, a także wyznaczenie cyklu termodynamicznego (p=f(V)) oraz wyznaczenie bilansu energetycznego i określenie sprawności sprężarki.
EN
The paper presents the laboratory stand for automatic measurements of thermodynamic parameters and characteristics of a piston compressor. The stand can also be used for investigations of thermodynamic parameters of other systems as well as for didactics. The methods used for determining the thermodynamic parameters and calibrating the measurement equipment are discussed. The system enables measurements of the instantaneous values of temperature, active volume of a compressor cylinder, pressure and air flow velocity. The thermodynamic cycle (p=f(V)), energy balance and compressor efficiency factor can also be determined.
7
Content available Obiegi termodynamiczne. Druga zasada termodynamiki
51%
|
|
tom T. 8
91--98
PL
Wstęp i cele: W pracy opisano obieg termodynamiczny silnika cieplnego, Carnota, chłodziarki i pompy grzejnej, Ponadto przedstawiono sprawność termiczną obiegu silnika oraz sprawność energetyczną obiegu chłodniczego i obiegu grzejnego. Omówiono różne sformułowania drugiej zasady termodynamiki. Celem pracy jest przedstawienie graficzne obiegów termodynamicznych silnika, chłodziarki i pompy grzejnej oraz analiza teoretyczna sprawność energetycznej omawianych obiegów termodynamicznych. Materiał i metody: Materiał stanowią źródła z literatury z zakresu termodynamiki. W pracy zastosowano metodę analizy teoretycznej. Wyniki: Rezultatem pracy jest przedstawienie graficzne i omówienie obiegów termodynamicznych silnika cieplnego, chłodziarki i pompy grzejnej. Ponadto w pracy przestawiono analizę teoretyczną sprawności termicznej obiegu silnika, sprawności energetycznej obiegu chłodniczego i grzejnego. Wniosek: Aby zrealizować obieg silnika nie wystarczy tylko dostarczać ciepło, lecz konieczne jest też odprowadzanie ciepła. Obieg chłodniczy lub obieg grzejny jest lewobieżny i może składać się z równych przemian termodynamicznych. Sprawność termiczna silnika może być zwiększona poprzez podniesienie temperatury ciepła doprowadzanego i obniżenie temperatury ciepła odprowadzanego.
EN
Introduction and aim: The paper describes the thermodynamic cycle of the heat engine, Carnot, refrigeration and transient pump. In addition, the thermal efficiency of the motor cycle and the energy efficiency of the refrigeration cycle and heating circuit have been presented. Different definitions of the second law of thermodynamics have been discussed. The aim of this paper is graphic representation of thermodynamic cycles of the engine, refrigerator and heating pump as well as theoretical analysis of energy efficiency of the discussed thermodynamic cycles. Material and methods: Material covers some sources based on the literature in the field of thermodynamics. The method of theoretical analysis has been shown in the paper. Results: The result of the work is a graphic representation and discussion of the thermodynamic cycles of the heat engine, the refrigerator and the heating pump. In addition, the work presents the thermodynamic analysis of the thermal efficiency of the motor cycle, the energy efficiency of the cooling and heating circuits. Conclusion: In order to realize the motor cycle, it will not only provide heat, but also heat removal. The refrigeration circuit or heating circuit is left-handed and may consist of even thermodynamic transformations. The thermal efficiency of the motor can be increased by raising the temperature of the heat supplied and reducing the temperature of the heat dissipated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.