W artykule przedstawiono nowy algorytm detekcji defektów, występujących w powierzchniach teksturowych, który, w przeciwieństwie do wielu metod opisanych w literaturze, nie wykorzystuje klasyfikacji nadzorowanej. Dzięki temu nie wymaga przygotowania zbioru uczącego i może być łatwo zastosowany w automatycznym systemie dokonującym wizualnej inspekcji powierzchni materiałów takich, jak: drewno, papier, materiały tekstylne, stal lub skały. W celu wykrycia i określenia lokalizacji defektów tekstur proponowane podejście dzieli analizowany obraz na obszary, następnie z wykorzystaniem rozkładu macierzy według wartości szczególnych i technik przetwarzania obrazów wyznacza cechy opisujące każdy z obszarów. Ostatecznie algorytm stosuje klasteryzację za pomocą metody rozmytych c-środków w celu zaklasyfikowania obszarów do jednej z dwóch klas: klasy defektu lub klasy pozbawionej defektu. Prezentowany algorytm zastosowano do analizy defektów, występujących w przykładowych teksturach naturalnych.
EN
In this paper we propose an algorithm for texture defects detection, which doesn't use supervised classification. The algorithm can be simply applied in an automatic visual inspection system. For localization of texture defects we calculate features of each non-overlapping region of an image via the Singular Value Decomposition (SVD) and image processing techniques. In next step the algorithm uses the fuzzy c-means clustering (FCM) to classify each region into two clusters. Finally we define a distance between centres of defective and non-defective clusters using some threshold value chosen empirically.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.