Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  termoakustyka
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono studium konstrukcji chłodziarki termoakustycznej, złożonej z wzbudnika akustycznego, rezonatora, regeneratora oraz zimnego i gorącego wymiennika ciepła. Pokazano również metodologię optymalizacji konstrukcji chłodziarki termoakustycznej z falą stojącą. Przyjęto, że gazem roboczym w analizowanym urządzeniu jest powietrze o ciśnieniu bezwzględnym 10 bar. Średnią temperaturę gazu wewnątrz chłodziarki założono na poziomie 230,65 K, a różnica temperatur między wymiennikiem zimnym i gorącym jest równa 75 K. Zbadano wpływ zmiany znormalizowanych pozycji i długości regeneratora na parametry termodynamiczne chłodziarki termoakustycznej (takie jak strumień ciepła i współczynnik efektywności chłodziarki). Podczas tej analizy założono stałą częstotliwość dźwięku wynoszącą fa = 600 Hz. Maksymalną moc cieplną ziębiarki otrzymano dla znormalizowanej pozycji regeneratora xs,n = 0,51 oraz znormalizowanej długości Ls,n = 1. Jednakże, najwyższy współczynnik efektywności chłodziarki (COP), wynoszący ponad 71 % uzyskano dla wartości parametrów wynoszących odpowiednio: xs,n = 0,17 oraz Ls,n = 0,311. Analizy powtórzono zmieniając częstotliwość fali akustycznej w przedziale 200-3000 Hz. Najwyższą wartość współczynnika efektywności osiągnięto dla częstotliwości fali akustycznej fa = 600 Hz. Omówiono koncepcję stanowiska badawczego, wykorzystującego zaprojektowane urządzenie, pozwalającego na eksperymentalną weryfikację przedstawionych wyników analizy termodynamicznej.
EN
The paper presents the feasibility study of thermoacoustic refrigerator design, composed of: acoustic inductor, resonator, stack, hot and cold heat exchangers. In addition, the methodology of optimizing the design of the thermoacoustic refrigerator with standing wave was presented. The ambient air at absolute pressure of 10 bar was assumed as the working gas in the thermoacoustic device. The average gas temperature inside the refrigerator is set at 230.65 K, and the temperature difference between cold and hot heat exchangers is 75 K. The influence of changes of normalized positions and length of the regenerator on the thermodynamic quantities (such as heat flux and Coefficient of Performance) was analyzed. During this analysis, a constant sound frequency of 600 Hz was assumed. The maximum heat output of the device was obtained for the normalized position of the regenerator xs,n = 0.51 and normalized length Ls,n = 1. However, the highest Coefficient of Performence of refrigerators that excess 71% was obtained for the values of parameters corresponding to: xs,n = 0.17 and Ls,n = 0.311. Eventually, the analyzes were performed for variable acoustic wave frequencies in range of 200-3000 Hz. The highest efficiency coefficient was reached for fa = 600 Hz. Finally, the concept of a test stand using a designed device allowing for experimental verification of the presented thermodynamic analysis results was described.
EN
The paper is concerned with an important issue from the field of thermoacoustics - the numerical modelling of the flow field in the thermoacoustic engine. The presented way of modelling is based on the solution to fundamental fluid mechanics equations that govern the flow of compressible, viscous, and heat-transferring gas. The paper presents the way of modelling the thermoacoustic engine, the way of conducting calculations and the results which illustrate the correctness of the selected computational technique.
|
|
tom Nr 4
63--68
PL
Doskonalenie technologii energetycznych jest związane z ciągłym wzrostem wymagań dotyczących zarówno parametrów technicznych, jak i środowiskowych, związanych z produkcją różnych użytecznych form energii. Wśród obszarów, podlegających ciągłej modernizacji, jest również chłodnictwo. Postęp jest tutaj widoczny w obszarze doskonalenia istniejących technologii, a także w poszukiwaniu nowych rozwiązań. Jednym z obecnie rozwijanych kierunków badań jest chłodnictwo termoakustyczne. Ze względu na interdyscyplinarny charakter zjawiska, łączącego akustykę i przepływ ciepła, modelowanie tego procesu jest zadaniem trudnym. Niemniej, obecny poziom rozwoju technik modelowania numerycznego pozwala na osiąganie zadawalających rezultatów. W artykule przedstawiono wyniki badań modelowych zjawiska termoakustycznego zachodzącego w elementarnym urządzeniu chłodniczym. W pracy opisano budowę fizyczną prostego urządzenia, a także przedstawiono odpowiedni model numeryczny wraz z parametrami brzegowymi i początkowymi. Uzyskane w procesie modelowania wyniki przedstawiają odpowiednie rozkłady temperatur w charakterystycznych obszarach urządzenia i obrazują zachodzące zjawisko termoakustyczne.
EN
Improvement of power technologies is connected with continuous rise in demand, concerning both technological and ecological parameters of useful forms of energy production. Among the fields of modernization, generation of cooling power may be stated. Progression in this field is especially visible due to improvement of state-of-the-art technologies, as well as research in promising solutions. One of currently investigated research paths is thermoacoustic cooling. Due to an interdisciplinary nature of the phenomenon, connecting acoustics with heat transfer, modelling of the process states a difficult task. However, contemporary level of numerical tools development allows to obtain satisfactory results of such analyses. In this paper the results of model investigation of an elementary cooling device are presented. The construction of simple device, as well as an adequate numerical model, coupled with boundary and initial conditions is described. The results obtained during the numerical modelling process present temperature distributions in characteristic zones of the device and illustrate the thermoacoustic phenomenon.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.