W niniejszej pracy opisano zastosowanie cech tekstury wyznaczanych na podstawie współczynników dwuwymiarowego dyskretnego przekształcenia falkowego do klasyfikacji tekstury obrazów. W ramach prowadzonych badań opracowano metodą wyznaczania "falkowych" cech tekstury dla nieregularnych obszarów zainteresowania. Zbadano skuteczność zaproponowanej metody klasyfikacji tekstur w odniesieniu do powszechnie uznanego zbioru tekstur testowych. Porównano skuteczność klasyfikacji wybranych klas tekstur obrazów MRI za pomocą proponowanych cech falkowych z dużym zbiorem innych cech tekstury. Ponadto zbadano wpływ zależności wartości cech "falkowych" od przesunięcia obszaru zainteresowania na wynik klasyfikacji tekstur. W pracy wykazano dużą skuteczność zaproponowanej metody do klasyfikacji tekstury zarówno obrazów naturalnych jak i obrazów tomograficznych rezonansu magnetycznego. Artykuł stanowi streszczenie rozprawy doktorskiej autora.
EN
This paper presents application of 2D discrete wavelet transform derived features for digital image texture classification. A new method of computation of wavelet derived texture features for irregular regions of interest was proposed. This texture classification method was tested on Brodatz and MRI texture sets. Texture classification efficiency for selected MRI images by means of proposed features was compared to a large number of statistical and model-based features. Also, the influence of feature shift invariance on classification result was investigated. The robustness of the proposed method for classification of both natural and MRI textures was demonstrated. This work summarises Author`s Ph.D. thesis, defended in September 2003 in the Institute of Electronics, Technical University of Łódź.
Celem artykułu jest omówienie zasad działania sieci synchronizowanych oscylatorów. Zgodnie z teorią "chwilowej korelacji" sieć taka symuluje zjawiska zachodzące w ludzkim mózgu podczas procesu analizy sceny wizyjnej, pozwalając na wydzielenie występujących tam obiektów i obszarów. Dlatego sieć oscylatorów może być wykorzystana do segmentacji obrazów, w tym obrazów zawierających tekstury. W pracy przedstawiono przykłady zastosowania takiej sieci do segmentacji obrazów biomedycznych a także pokazano, że może być wykorzystana również do wykrywania brzegów obiektów w obrazach binarnych a także granic pomiędzy obszarami różniącymi się teksturą. Przykłady takich zastosowań zostały zawarte w pracy. Przeprowadzono również porównanie i dyskusję otrzymanych wyników segmentacji z wykorzystaniem sieci synchronizowanych oscylatorów oraz perceptronowej sieci neuronowej.
EN
This work presents principles of operation of synchronised oscillators network. According to "temporary correlation" theory this network simulates a process of visual scene analysis performed by human brain. This allows for scene object detection and such a network can be used for image segmentation. The segmentation can be performed also for image textures. Examples of biomedical textured images segmentation are presented. It is also demonstrated, that oscillator network can be used for object edge and texture boundary detection. Examples of such applications are included in this paper. Also, the performance of texture segmentation using network of synchronised oscillators and the perceptron neural network is compared and discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.