Zjawiska elektronowej emisji wtórnej oraz multipaktoringu stanowią często poważne zagrożenie dla prawidłowej pracy mikrofalowych elementów mocy, takich jak klistrony, magnetrony, falowody i sprzęgacze. Z multipaktoringiem wiążą się efekty silnego wzrostu prądu elektronów wtórnych ze ścian układu próżniowego, desorpcji gazów powierzchniowych, lokalnego grzania powierzchni i powstania naprężeń cieplnych, które w przypadku izolacyjnych komponentów ceramicznych mogą doprowadzić do zniszczeń mechanicznych. Jednym ze środków zabezpieczających układy mocy wysokiej częstotliwości przed efektami multipaktoringu są pokrycia cienkimi warstwami materiałów o grubości rzędu kilku nanometrów, charakteryzujących się niską wartością wpółczynnika wtórnej emisji elektronowej SEY (ang. secondary ). Z uwagi na niską wartość SEY, jak również stabilność w polu mikrofalowym oraz w podwyższonej temperaturze związkiem często stosowanym do wykonywania tego typu pokryć jest azotek tytanu. Warstwy antyemisyjne TiN uzyskuje się obecnie dwiema metodami: metodą rozpylania katodowego oraz metodą naparowania tytanem w atmosferze rozrzedzonego amoniaku. Praca dotyczy zastosowania metody naparowania do wytwarzania warstw antyemisyjnych na ceramicznych lub metalowych powierzchniach elementów sprzęgaczy w ramach realizacji projektu badawczego Tesla Test Facility (TTF)/XFEL, realizowanego w Deutsches Elektronen Synchrotron (DESY) w Hamburgu oraz w Instytucie Problemów Jądrowych im. Andrzeja Sołtana (IPJ) w Świerku. Artykuł zawiera opis procedury nakładania warstw Tin oraz typowych wyników pomiarów SEY i składu chemicznego mierzonego metodą XPS.
EN
The performance of such RF power components as klystrons, magnetrons, wave-guides and couplers is often limited by secondary electron emission and multipacting. The latter results in the rise of secondary electron yield (SEY), residual gas desorption, local heating and thermal stresses which, particularly in ceramic elements, may lead to cracking. Surface coating with several nm thick films of low SEY materials is one of the most important anti-multipactor remedies. TiN surface layers are largely preferred for multipactor suppression due to their low secondary emission on the one hand and good stability in RF electromagnetic fields and in high temperatures on the other. Anti-multipactor TiN layers are usually reached using two methods: reactive magnetron sputtering or titanium evaporation in ammonia. This paper deals with TiN protective layers generation on ceramic or metal surfaces of RF couplers using evaporation technique developed within the frames of Tesla Test Facility (TTF)/XFEL project carried out in Deutsches Elektronen Synchrotron (DESY) in Hamburg and in The Soltan Institute for Nuclear Studies (SINS) at Świerk. The article describes the basics of the coating procedure, results of SEY coefficients measurements and XPS studies on TiN coated surfaces.
The aim of this research was to examine the influence of process parameters of low-temperature plasma treatment on the permeability, stability, and antibacterial properties of polyamide membranes. As a result of the work, the process conditions were selected for plasma deposition of copper oxide, which enable the high stability of the copper oxide coatings on the filtration materials characterized by efficient permeability and antimicrobial activity. Further work is necessary to examine new generation filtration materials in real process conditions for industrial post-consumer liquids. This can contribute to the implementation of the new generation filtration materials proposed in this work.
PL
W pracy przedstawiono wyniki badań dotyczące wpływu parametrów procesowych niskotemperaturowej plazmowej obróbki powierzchni membran poliamidowych na przepuszczalność, stabilność i właściwości antybakteryjne wytworzonych materiałów filtracyjnych. W rezultacie przeprowadzonych eksperymentów dobrano warunki procesowe plazmowej obróbki tlenkiem miedzi, które umożliwiają wytworzenie stabilnych materiałów filtracyjnych charakteryzujących się wysoką przepuszczalnością i właściwościami antybakteryjnymi. Konieczne są dalsze prace umożliwiające zbadanie zachowania wytworzonych materiałów filtracyjnych w rzeczywistych warunkach procesowych przy użyciu ścieków przemysłowych. Dopiero takie działania mogą przyczynić się do udanej komercjalizacji rozwiązania materiałowego zaproponowanego w niniejszej pracy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.