Nowadays, the primary place of information exchange is the internet. Its features, such as: availability, unlimited capacity and diversity of information influenced its unrivalled popularity, making the internet a powerful platform for storage, dissemination and retrieval of information. On the other hand, the internet data are highly dynamic and unstructured. As a result, the internet users face the problem of data overload. Recommender systems help the users to find the products, services or information they are looking for. The article presents a recommender system for music artist recommendation. It is composed of user-based as well as item-based procedures, which can be selected dynamically during a user’s session. This also includes different similarity measures. The following measures are used to assess the recommendations and adapt the appropriate procedure: RMSE, MAE, Precision and Recall. Finally, the generated recommendations and calculated similarities among artists are compared with the results from LastFM service.
PL
W obecnych czasach głównym miejscem wymiany informacji jest internet. Jego cechy, takie jak: wysoka dostępność, nieograniczona pojemność i różnorodność informacji wpłynęły na jego niezrównana popularność. W ten sposób internet stał się potężną platformą do przechowywania, rozpowszechniania i udostępniania informacji. Z drugiej strony, dane internetowe są bardzo dynamiczne i niestrukturalizowane. W rezultacie, użytkownicy internetu muszą radzić sobie z problemem przeładowania danych. Systemy rekomendujące służą pomocą użytkownikom w celu znalezienia poszukiwanych produktów, usług lub informacji. W artykule przedstawiono system rekomendujący artystów muzycznych. Składa się on z procedur typu user-based oraz item-based oraz różnych sposobów szacowania podobieństwa, które mogą˛ być zmieniane dynamicznie podczas sesji użytkownika. Do oceny list rekomendacji wykorzystano następujące miary: RMSE, MAE, Precision i Recall. Dodatkowo, wygenerowane rekomendacje i obliczone podobieństwa miedzy artystami są porównywane z wynikami z serwisu LastFM .
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In collaborative filtering, recommendations are made using user feedback on a few products. In this paper, we show that even if sensitive attributes are not used to fit the models, a disparate impact may nevertheless affect recommendations. We propose a definition of fairness for the recommender system that expresses that the ranking of items should be independent of sensitive attribute. We design a co-clustering of users and items that processes exogenous sensitive attributes to remove their influence to return fair recommendations. We prove that our model ensures approximately fair recommendations provided that the classification of users approximately respects statistical parity.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper is devoted to application of collaborative filtering that is one of the method of automatic data filtering in the Internet. The main disadvantage of the approach is the necessity of performing a large number of operations. The authors have presented a mean of overcoming this problem by reduction of the dimension of the input matrix. Experimental results show that it had led not only to reduction of computational time, but also increased the accuracy of recommendations obtained.
PL
Artykuł poświęcony jest filtrowaniu kolaboracyjnemu, które jest jedną z metod automatycznej filtracji danych w sieci Internet. Główną wadą wspomnianego podejścia jest konieczność wykonywania bardzo dużej liczby operacji. Autorzy przedstawili rozwiązanie tego problemu polegający na redukcji wymiarowości przetwarzanej macierzy. Rezultaty badań pokazują, że oprócz zmniejszenia czasu obliczeń, uzyskano poprawę dokładności uzyskiwanych rekomendacji.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Recommendation strategies are used in several contexts in order to bring potential users closer to products with a strong probability of interest. When recomendations focus on niche items, they are called recommendations in the long tail. In these cases, they also look for less popular items and try to find your target custumer, niche market. This paper proposes a long tail recommendation approach that prioritizes relevance, diversity and popularity of recommended items. For that, a hybrid approach based on two techniques are used. The first is clustering with dynamic parameters that adapt from according to the dataset used and the second is a type of Markov chains for to calculate the distance of interest of a user to an item of relevance for this user. The results show that the techniques used have a better relevance indexes at the same time more diverse and less popular recommendations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.