Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  system typu multi-agent
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Markov games, as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi-agent systems. In this paper, several learning automata based multi-agent system algorithms for finding optimal policies in fully-cooperative Markov Games are proposed. In the proposed algorithms, Markov problem is described as a directed graph in which the nodes are the states of the problem, and the directed edges represent the actions that result in transition from one state to another. Each state of the environment is equipped with a variable structure learning automata whose actions are moving to different adjacent states of that state. Each agent moves from one state to another and tries to reach the goal state. In each state, the agent chooses its next transition with help of the learning automaton in that state. The actions taken by learning automata along the path traveled by the agent is then rewarded or penalized based on the value of the traveled path according to a learning algorithm. In the second group of the proposed algorithms, the concept of entropy has been imported into learning automata based multi-agent systems to drive the magnitude of the reinforcement signal given to the LA and improve the performance of the algorithms. The results of experiments have shown that the proposed algorithms perform better than the existing learning automata based algorithms in terms of speed and the accuracy of reaching the optimal policy.
PL
Zaprezentowano szereg automatów uczących bazujących na algorytmach systemów typu multi-agent w celu poszukiwania optymalnej polityki w kooperatywnej grze Markova. Proces Markova jest opisany w postaci grafów których węzły opisują stan problemu, a krawędzie reprezentują akcje.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.