Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  symmetry breaking
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2016
|
tom 4
|
nr 1
EN
We give an example of a smooth surface of revolution for which all circles about the origin are strictly stable for fixed area but small isoperimetric regions are nearly round discs away from the origin.
EN
Freedericksz transition, which is usually analyzed by an elastic theory, is studied on the basis of statistical mechanical ground, where nematics with positive dielectric anisotropy in homogeneous anchoring cell is exposed to an electric field in the direction of wall normal. In low temperature region, an oblique axial symmetry breaking occurs, which is nothing but the Freedericksz transition. In high temperature and high field region, biaxial nematic phase with principal axis parallel to the field direction at interior area of the system is proved to appear. A phase diagram on the field versus temperature plane is obtained and compared with the one at a bulk with common biaxial symmetry, where both of electric and magnetic fields are applied in directions perpendicular to each other. In the latter, no symmetry breaking occurs, in contrast with the former case above-mentioned, and the reason why this difference occurs is elucidated.
EN
Following Berni Alder [1] and Francis Ree [2], Douglas Henderson was the third of Bill’s California coworkers from the 1960s to die in 2020 [1, 2]. Motivated by Doug’s death we undertook better to understand Lyapunov instability and the breaking of time symmetry in continuum and atomistic simulations. Here we have chosen to extend our explorations of an interesting pair of nonequilibrium systems, the steady shockwave and the unsteady rarefaction wave. We eliminate the need for boundary potentials by simulating the collisions of pairs of mirror-images projectiles. The resulting shock and rarefaction structures are respectively the results of the compression and the expansion of simple fluids. Shockwaves resulting from compression have a steady structure while the rarefaction fans resulting from free expansions continually broaden. We model these processes using classical molecular dynamics and Eulerian fluid mechanics in two dimensions. Although molecular dynamics is time-reversible the reversed simulation of a steady shockwave compression soon results in an unsteady rarefaction fan, violating the microscopic time symmetry of the motion equations but in agreement with the predictions of macroscopic Navier-Stokes fluid mechanics. The explanations for these results are an interesting combination of two (irreversible) instabilities, Lyapunov and Navier-Stokes.
4
Content available Is Time Inhomogeneous ?
70%
EN
In this article, we discuss probability of inhomogeneous time in high or low energy scale of physics. Consequently, the possibility was investigated of using theories such as varying speed of light (VSL) and fractal mathematics to build a framework within which answers can be found to some of standard cosmological problems and physics theories on the basis of time non-homogeneity.
5
Content available remote Solving Sequential Planning Problems via Constraint Satisfaction
60%
EN
Planning problems deal with finding a sequence of actions that transfer the initial state of the world into a desired state. Frequently such problems are solved by dedicated algorithms but there exist planners based on translating the planning problem into a different formalism such as constraint satisfaction or Boolean satisfiability and using a general solver for this formalism. The paper describes how to enhance existing constraintmodels of sequential planning problems by using techniques such as symmetry breaking (dominance rules), singleton consistency, nogoods, lifting, or techniques motivated by the partial-order planning.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.