Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  symbolic computing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article is devoted to the mathematical formulation and computational implementation of the Stochastic Finite Volume Method for heat and fluid flow problems. It is based on the stochastic generalized perturbation technique, which allows for determination of the probabilistic moments of the state variables or functions of the general stationary transport equations with random parameters. Both numerical case studies contain a comparison of the stochastic perturbation approach of different orders, their relations to the Monte-Carlo simulation results as well as the effect of the perturbation parameter and input coefficient of variation on the output state functions.
EN
This article is devoted to the mathematical formulation and computational implementation of the Stochastic Finite Volume Method for 1 and 2D fluid and heat flow problems. It is based on the stochastic generalized perturbation technique, which allows for a determination of the probabilistic moments of the state variables or functions for the general stationary transport equations with random parameters. Both numerical case studies contain a comparison of the stochastic perturbation approach of different orders, their relations to the Monte-Carlo simulation results as well as the effect of the perturbation parameter and input coefficient of variation on the output state functions.
EN
The main aim of this article is numerical solution to the Navier–Stokes equations for incompressible, non-turbulent and subsonic fluid flows with Gaussian physical random parameters. It is done with the use of the specially adopted Finite Volume Method extended towards probabilistic analysis by the generalized stochastic perturbation technique. The key feature of this approach is the weighted version of the Least Squares Method implemented symbolically in the system MAPLE to recover nodal polynomial response functions of the velocities, pressures and temperatures versus chosen input random variable(s). Such an implementation of the Stochastic Finite Volume Method is applied to model 3D flow problem in the statistically homogeneous fluid with uncertainty in its viscosity and, separately, coefficient of the heat conduction. Probabilistic central moments of up to the fourth order and the additional characteristics are determined and visualized for the cavity lid driven flow owing to the specially adopted graphical environment FEPlot. Further numerical extension of this technique is seen in an application of the Taylor–Newton–Gauss approximation technique, where polynomial approximation may be replaced with the exponential or hyperbolic ones.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.