Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  symbolic computations
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 5, nr 1
69-80
EN
The main idea is to show the application of symbolic computations in analysis of engineering systems with random parameters. The general computational methodology is based on the stochastic second order perturbation method and its implementation in the mathematical package MAPLE. The entire approach is displayed on the example of a simple single degree of freedom dynamical system with random spring stiffness. The results of symbolic computations are derived numerically in the form of probabilistic moments of the structural response, computed for the whole analysis time domain. This methodology can be applied to all the engineering problems, where the response can be derived symbolically in the deterministic case, while input parameters of the system are random variables, fields or processes characterized by the probability density function (PDF) of any type.
2
Content available remote Computational Solutions for the Korteweg–deVries Equation in Warm Plasma
100%
EN
The reductive perturbation method has been employed to derive the Korteweg–deVries (KdV) equation for small but finite amplitude electrostatic ion-acoustic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters to reveal different solutions, i.e. bell-shaped solitary pulses, rational pulses and solutions with singularity at a finite points called “blowup” solutions in addition to the propagation of explosive pulses. The result of the present investigation may be applicable to some plasma environments, such as ionosphere.
|
|
tom Vol. 166, nr 2
87--110
EN
The object of this article is to present the computational solution of the time-fractional Schrödinger equation subject to given constraint condition based on the generalized Taylor series formula in the Caputo sense. The algorithm methodology is based on construct a multiple fractional power series solution in the form of a rabidly convergent series with minimum size of calculations using symbolic computation software. The proposed technique is fully compatible with the complexity of this problem and obtained results are highly encouraging. Efficacious computational experiments are provided to guarantee the procedure and to illustrate the theoretical statements of the present algorithm in order to show its potentiality, generality, and superiority for solving such fractional equation. Graphical results and numerical comparisons are presented and discussed quantitatively to illustrate the solution.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.