Purpose: Superplastic forming (SPF) technology exceeds the limit of standard presswork either of form or of thickness distribution, but the lead time and the energy expenditure are more onerous for industrial use. The aim of this work is to study the role that process parameters play in a superplastic forming manufacturing in order to minimize the processing times and the cost respecting the “total quality” of the finished product. Design/methodology/approach: Identified the basic parameters of SPF process that is the thickness of blank, the strain rate and the processing temperature, were chosen three different values for each of them. For each combination of parameters and using finite element software, a forming simulation of a sample part was made. Important parameters as thickness reduction, stress distribution, time/working pressure curve are calculated and evaluated. Findings: The obtained results were manipulated in order to create some global indicators that was analysed to study the reliance on process quality and production costs. Research limitations/implications: The other and more difficult to define parameters, such as cast and initial sheet shape, friction between cast and sheet, need to be evacuated because they also affect the optimisation process, as well as its affordability, that is the result of careful control of process variables. Practical implications: The highlighted dependencies are whatever useful, during process configuration, to drive production choices for quality improvement and cost reduction of superplastic formed components. Originality/value: The interesting result is that some dependencies are not as strong as expected from literature. As an example, the quality parameters dependence on the strain rate is no linear. So much as to the decrease of strain rate some indices worsen considerably.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The purpose of the article is to present the results of research of the effect of thermal and thermoplastic working on the structure of high-manganese austenitic TWIP steels. Design/methodology/approach: Plastometric tests were performed with DSI (Dynamic System Inc.) Gleeble 3800 instrumentation being the equipment of the Scientific and Didactic Laboratory of Nanotechnology and Materials Technologies of the Institute of Engineering Materials and Biomaterials. Changes in the microstructure after individual stages of hot plastic deformation were determined on the basis of detailed microstructure tests with the light microscope and scanning electron microscope. An X-ray phase qualitative analysis of the examined materials in the condition after casting and after thermoplastic working was carried out with the XPert diffractometer by Philips. Findings: It was concluded based on the tests performed that the structure of the examined austenitic high-manganese steel in the initial condition is represented by austenite with numerous annealing twins. The results obtained for investigations in a continuous compression test will enable to establish power and energy parameters and design a hot compression process, consisting of several phases, of axisymmetric specimens, simulating the final rolling passes. Practical implications: By elaborating the detailed data concerning structural changes and power and energy parameters of the thermoplastic working process of the investigated high-manganese austenitic TWIP steel type, it will be possible to design appropriately the final passes of the hot rolling process to obtain an optimum size of grains, which will in turn influence the improved strength properties of the investigated high-manganese austenitic X11MnSiAl25-1-3 steel. Originality/value: The application of thermoplastic working of high-manganese austenitic TWIP steel.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.