In this paper, the rates of approximation of Lebesgue-integrable functions by the Taylor means of their Fourier series are estimated by the characteristics created by the relation defining the Lebesgue-type points. Some corollaries for Lipschitz functions are also derived.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We show the results corresponding to theorems of S. Lai [Appl. Math. Comput., 209 (2009) 346-350] on the rate of approximation of functions from the generalized integral Lipschitz classes by matrix summability means of their Fourier series as well as to the authors theorems [Acta Comment. Univ. Tartu. Math., 13 (2009), 11-24] also on such approximations.
We consider the class GM(₂β) in pointwise estimate of the deviations in strong mean of almost periodic functions from matrix means of partial sums of their Fourier series.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We extend the results of Xh. Z. Krasniqi [Acta Comment. Univ. Tartu. Math., 2013, 17, 89-101] and the authors [Acta Comment. Univ. Tartu. Math., 2009, 13, 11-24] to the case of 2π/r-periodic functions. More over, as a measure of approximation r-differences of the entries are used.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.