Let L be a second order elliptic operator with smooth coefficients defined on a domain Ω ⸦ Rd (possibly unbounded), d ≥ 3. We study nonnegative continuous solutions u to the equation Lu(x) - φ (x, u(x)) = 0 on Ω, where φ is in the Kato class with respect to the first variable and it grows sublinearly with respect to the second variable. Under fairly general assumptions we prove that if there is a bounded nonzero solution then there is no large solution.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.