Standard artificial neural networks and Baycsian neural networks (BNNs) are briefly discussed on example of a simple feed-forward layered neural networks (FLNN). Main ideas of the Baycsian approach and basics of the applied BNNs are presented in short. A study case corresponds to prediction of Displacement Response Spectrum inside buildings at the basement level (DRSb). Data for network training and testing were adopted as DRS corresponding to the preprocessed accelerograms. They were taken from measurements in the Lcgnica-Gtogow Copperfield at monitored 5-storey buildings subjected to paraseismic excitations from explosives in nearby strip mines. Results of neural predictions by three NNs (standard FLNN trained by means of the conjugate gradient learning method, Simple Bayesian SBNN and Full Bayesian FBNN) are presented. The errors of predictions are on average on the level of 4% errors.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.