Purpose: Warm stretch-formability of 0.2%C-1.5%Si-(1.5-5.0)%Mn transformation-induced plasticity (TRIP)-aided sheet steels with annealed martensite matrix was investigated for automotive applications. Additionally, the warm stretch-formability was related with the retained austenite characteristics. Design/methodology/approach: This study was aimed to enhance the stretchformability by warm forming which stabilizes mechanically a large amount of metastable retained austenite in the steels. Findings: The warm stretch-formability increased with an increase in Mn content. The stretch-formability of 5% Mn steel was improved by warm forming at peak temperatures of 150-300°C, which was the same level as that of 0.2%C-1.5%Si-1.5%Mn0.05%Nb TRIP-aided martensitic steel. The superior warm stretch-formability was caused by a large amount of mechanically stabilized retained austenite which suppresses considerably void initiation and growth at interface between matrix and transformed martensite. Higher peak temperatures for the stretch-formability than that for the total elongation was associated with high mean normal stress on stretch-forming. Research limitations/implications: The effect of warm forming on the stretchformability is smaller than that on the ductility. Practical implications: Investigation results can be easily applied to industrial technology. Originality/value: This paper presents an important result which the stretch-formability of 5% Mn TRIP-aided steel is mainly improved by stabilizing of retained austenite with low stacking fault energy. On the forming, only strain-induced α’-martensite transformation takes place and suppresses the void growth. The strain-induced bainite transformation never occurs during forming in 5% Mn steel, differing from conventional 1.5% Mn TRIP-aided steel.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.