Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stormwater management
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main goal of this article is to investigate sustainable urban development of the Central European city (Wrocław/Poland) through an environmental engineering application of SUDS (Sustainable Urban Drainage Systems) measures to managing stormwater in city sections with various land use in the same watershed area (the Ślęża River Valley). The author presents a study made in three different parts of the city (single housing district – Oporów, multihousing district – Nowy Dwór, public service district – Stadion), which were constructed in different historical periods. The analyses were supported by city masterplan, GIS software (Quantum GIS 1.7.4) and calculations made according to up-to-date specific regulations. They demonstrate the current sustainable stormwater management scenarios for areas of different land use, historical periods and function in the city. The proposed research method aims to compare sustainable urban development of the new urban district with the quarters, which had been built before the term “sustainability” became common in water and land development practice. The conducted study can be practically used as a supportive tool for urban planning authorities in Poland. The paper investigates a novel in the Polish realities method of assessment sustainability of the area through green infrastructure application in district scale.
PL
Celem pracy była analiza procesu urbanizacyjnego Wrocławia w kontekście zrównoważonego rozwoju poprzez symulację gospodarowania wodą opadową w skali dzielnicy. Do celów badawczych wybrano trzy charakterystyczne rodzaje zabudowy miasta z różnych okresów historycznych (Oporów – zabudowa jednorodzinna, Nowy Dwór – zabudowa wielorodzinna, Stadion – teren usługowy), znajdujące się w zlewni rzeki Ślęza. W celu przeprowadzenia analiz wykonano wektoryzację obszarów za pomocą oprogramowania Quantum GIS (1.7.4) oraz aktualizowanych map Systemu Informacji Przestrzennej Wrocławia dostępnych w serwisie internetowym. Sklasyfikowano wszelkie powierzchnie nieprzepuszczalne, tj. nawierzchnie utwardzone, pokrycia dachowe. Za potencjalne składowe zielonej infrastruktury uznano natomiast powierzchnie przepuszczalne, tj. obszary wegetacyjne, nawierzchnie przepuszczalne, zielone dachy. W obliczeniach porównawczych posłużono się wartościami współczynników spływu według polskiej normy PN-92/B-0170. Dodatkowo, w ocenie zielonych dachów ekstensywnych, wykorzystano współczynnik spływu według opracowań amerykańskich. Badanie przepuszczalności wybranych trzech obszarów wzdłuż rzeki Ślęza w granicach Wrocławia wykazało duże możliwości kształtowania zrównoważonej gospodarki wodnej tych terenów poprzez zastosowanie elementów zielonej infrastruktury.
2
Content available remote Przyjazne miejsce zamieszkania
100%
PL
Artykuł dotyczy metod gospodarowania wodą deszczową i redukcji ryzyka powodzi w powiązaniu z optymalizacją funkcjonalną i poprawą jakości przestrzeni miejskiej. Programy wdrażane w Niemczech (Modell Kronsberg), Holandii (Room jor the Rivers), czy Anglii (LIFE) wyznaczają nowe kierunki zrównoważonego rozwoju miast nieodzowne w obliczu zmian klimatycznych i postępującej presji urbanizacji.
EN
The paper focuses on the methods of rainwater management and flood-risk reduction in line with functional optimisation and urban quality improvement. In the face of climate changes and growing pressure of urbanization such programmes as Modell Kronsberg, Room for the Rivers, or LIFE, implemented in Germany, Holland and Great Britain, determine new trends in sustainable urban development.
EN
The goal of the research was to investigate the retention capacity of six green roof models (SHP1, SHP2, SHP3, SH, S, and SP) constructed with the use of the square-shaped plastic trays, Floradrain FD 25 drainage elements, SF filter sheets, and the specified extensive substrates (with or without the hydrogel amendment). The SHP1 and SHP2 models were constructed in March 2017, SHP3 and SH – in November 2017, while S and SP – in April 2018. Four models (SHP1, SHP2, SHP3, and SP) contained the plants (the goldmoss stonecrop Sedum Acre), whereas two models (S and SH) did not contain the vegetation. The substrates of SHP1, SHP2, SHP3, and SH models contained the hydrogel admixtures. The investigations were conducted with the use of simulated (and partially natural) precipitations. The water retention capacity of each green roof model was established based on the difference between the precipitation volume and the volume of runoff from a model. The results show that green roofs can be useful stormwater management tools. The calculated stormwater retention rates ranged from 29.50% to 85.15%. In most cases, the best water retention capacity was exhibited by the SHP3 model, constructed in November 2017 and planted in April 2018, containing the substrate amended with superabsorbent (cross-linked potassium polyacrylate). The similarly constructed SHP1 and SHP2 models, which were built in March 2017, in some cases had lower water retention capacity. These models contained older hydrogel and were overgrown with older, smaller, and worse looking plants, partially supplanted by mosses. Such results indicate that the efficiency of hydrogel may decrease over time. In many cases, the S (not vegetated, without hydrogel), SH (not vegetated, with substrate containing hydrogel), and SP (vegetated, without hydrogel) models had slightly lower water retention capacity. The results of investigations indicate that there was a relatively strong positive linear correlation between the retention depth and duration of the antecedent period elapsed from the preceding total (or substantial) saturation of the green roof models (labelled in this article as period since total saturation – PSTS). The weather conditions i.e. air temperature and relative humidity as well as PSTS are very important parameters that influence the retention capacity of the green roof models. The result show that duration of PSTS can be stronger correlated with the retention depth than antecedent dry period (ADP) elapsed from the end of last precipitation, regardless of its depth and intensity.
4
Content available remote Wybór metody modernizacji systemu kanalizacyjnego przy wykorzystaniu metody ahp
100%
PL
Modernizacja systemów kanalizacyjnych wymaga uwzględnienia różnych wariantów rozwiązań. Dotychczas są one oceniane zazwyczaj według jednego kryterium, najczęściej ekonomicznego. Pełna ocena takich zamierzeń wymaga natomiast uwzględnienia także kryteriów pozaekonomicznych, na przykład społecznych i niezawodnościowych. Ocenę taką umożliwia między innymi metoda AHP (Analitical Hierarchy Process), w której mogą być ujęte rozmaite kryteria mierzalne i niemierzalne, wartościowane względem siebie. W artykule przedstawiono ogólne zasady stosowania metody AHP oraz przykład jej zastosowania do wyboru optymalnego wariantu modernizacji systemu kanalizacyjnego dla rzeczywistej zlewni.
EN
In the paper, we demonstrate the example of the use of Analytic Hierachy Process (AHP) for searching an optimal solution of an urban sewerage system modernization. The principles of the AHP method and its applicability for environmental projects are presented. The fi ve following criteria of solution assessment were taken into consideration: economic, ecological, reliability, social and technical. The aim of modernization of the sewerage system was reducing environmental impact due to CSO events, hydraulic relief of conduits and in consequence reducing of fl ooding on urban catchment. Four alternatives of meeting this aim were analysed: one storage tank prior to the CSO, eight storage tanks located on the catchment, one storage tank on the CSO channel, dispersed retention devices located on the sub-catchments. The alternative no.1 was found as the optimal solution of the problem.
5
84%
PL
Zastosowanie dynamicznych symulacji umożliwiających ocenę funkcjonowania sieci kanalizacyjnej staje się coraz powszechniej wykorzystywanym narzędziem w pracy inżynierów, zajmujących się zagadnieniami gospodarki wodno-ściekowej w miastach. Te techniki komputerowe wykorzystywane są do analiz oraz prognozowania różnych sytuacji mogących pojawiać się w trakcie eksploatacji kanalizacji. Symulacje komputerowe umożliwiają analizę różnych wariantów kształtowania się wielkości spływów powierzchniowych przy różnych warunkach zjawisk pogodowych i retencji powierzchni jak również zastosowania urządzeń do retencji lub infiltracji wód opadowych. Urządzenia do lokalnego zagospodarowania wód opadowych, zaliczane do obiektów typu LID (Low Impact Development) pozwalają zmniejszyć wpływ wód opadowych na odbiorniki. Celem pracy było wykazanie celowości wykorzystania symulacji spływu z wybranej zlewni z zastosowaniem oprogramowania pozwalającego na przeprowadzenie obliczeń hydrogramów odpływu w punktach kontrolnych kanalizacji deszczowej dla określenia wpływu urządzeń do bioretencji na dynamikę odpływu ścieków deszczowych odprowadzonych siecią kanalizacyjną. W pracy wykorzystano wyniki z kampanii pomiarowych wykonanych we Wrocławiu, w rejonie analizowanej zlewni. Wykazano, że zastosowanie modeli hydrodynamicznych wspomaga ocenę wpływu obiektów LID na funkcjonowanie kanalizacji deszczowej.
EN
The application of dynamic simulations that enable to evaluate the operation of drainage networks is becoming an increas- ingly popular tool used in the work of engineers who deal with water and wastewater management issues in urban areas. These IT solutions are used for the purposes of analysing and forecasting various situations that might occur during the operation of the network. Computer simulations enable to analyse different variants of surface runoff volumes at various weather conditions and surface retention as well as to apply rainwater retention or infiltration facilities. Local rainwater management systems that belong to LID (Low Impact Development) facilities allow to reduce the influence of rainwater on the receiver. The aim of the study was to demonstrate the advisability to use the simulation of runoff from a selected catchment sup- ported by software that enables to calculate the runoff hydrograph at rainwater drainage system control points in order to determine the influence of bioretention facilities on the dynamics of stormwater runoff discharged through sewage network. The research was based on the results obtained from measurement campaigns conducted in Wrocław, in the area of the analysed catchment. It was demonstrated that the application of hydrodynamic models supports the evaluation of the influence of LID facilities on the operation of rainwater drainage systems.
PL
Na terenach zlewni zurbanizowanych, obok tradycyjnych systemów kanalizacyjnych, coraz częściej stosuje się zrównoważone systemy drenażu (ZSD, ang. SUDS - Sustainable Urban Drainage Systems), które umożliwiają zagospodarowanie wód opadowych możliwie jak najbliżej miejsca wystąpienia opadu. Jednym z przykładów takich rozwiązań są zielone dachy. W artykule zaprezentowano wyniki badań zdolności retencyjnych sześciu modeli zielonych dachów, oznaczonych w tekście artykułu symbolami: SHR1, SHR2, SHR3, SH, S i SR. W przypadku modeli SHR1, SHR2, SHR3 i SH zastosowano dwie warstwy substratu ekstensywnego o nazwie handlowej „Skalny kobierzec”. Dolna warstwa substratu zawierała domieszkę 0,5 % wag. hydrożelu potasowego (usieciowanego poliakrylanu potasu), natomiast górną warstwę stanowił ww. substrat bez domieszek. W przypadku modeli SHR1, SHR2, SHR3 zastosowano warstwę roślinności - rozchodnik ostry (Sedum Acre), natomiast model SH nie zawierał warstwy roślinności. Z kolei w przypadku modeli S i SR zastosowano jednolitą warstwę substratu ekstensywnego „Skalny kobierzec” bez dodatku hydrożelu, przy czym model SR posiadał warstwę roślinności (rozchodnik ostry), a model S był pozbawiony roślin. Modele SHR1 i SHR2 zostały skonstruowane w marcu 2017 r., modele SH i SHR3 w listopadzie 2017 r., a modele S i SR w kwietniu 2018 r. Badania były prowadzone z zastosowaniem opadów naturalnych oraz sztucznych (symulowanych). Na podstawie otrzymanych wyników można stwierdzić, że zastosowanie zielonych dachów może pozwolić na zmniejszenie natężenia odpływu wody opadowej ze zlewni. Uzyskane wyniki wskazują, że w większości przypadków najlepsze zdolności retencyjne wykazywały modele zielonych dachów obsadzone dobrze ukorzenioną, gęstą warstwą roślinności, które równocześnie zawierały substrat z domieszką hydrożelu (SHR1, SHR2). W niewielkim stopniu niższą zdolnością retencyjną charakteryzował się model o bardzo zbliżonej konstrukcji (SHR3), posiadający rzadszą i słabiej ukorzenioną warstwę roślinności. W większości przypadków mniejsze objętości wody były retencjonowane w warstwach pozostałych modeli: S (niezawierającego roślin ani domieszki hydrożelu), SR (zawierającego roślinność, ale niezawierającego hydrożelu) i SH (zawierającego domieszkę hydrożelu, lecz nieposiadającego warstwy roślinności). Otrzymane wyniki wskazują, że dodatek hydrożelu może wpływać pozytywnie na zdolności retencyjne dachów obsadzonych roślinnością, pod warunkiem, że okres bezdeszczowy poprzedzający opad nie będzie bardzo krótki i dach częściowo odzyska zdolność do retencjonowania wody. Na podstawie uzyskanych wyników można stwierdzić, że dodatek hydrożelu do substratu w przypadku modelu pozbawionego roślinności nie powodował znaczącego zwiększenia jego zdolności retencyjnych. Otrzymane wyniki wskazują, że dużą rolę w retencjonowaniu wody opadowej odgrywa warstwa roślinności, zwłaszcza w okresie późnej wiosny i lata, kiedy panują stosunkowo wysokie temperatury.
EN
In urbanized areas, in addition to the traditional sewer systems, increasingly are used the sustainable urban drainage systems (SUDS), inter alia, the green roofs. The focus of the research described in the article was to investigate the retention capacities of six green roof models denoted in the paper by symbols: SHR1, SHR2, SHR3, SH, S, and SR. The models were constructed with use of the plastic garden trays (with internal dimensions 55.7 × 55.7 × 7 cm). On the bottom of each tray the drainage element Floradrain FD 25 was placed. On each drainage element the filter sheet SF (70 × 70 cm) was spread. On the surface of each filter sheet the required amount of the specified substrate was placed. The total thickness of substrate layer on each model was equal. Models SHR1, SHR2, SHR3, SH were built of two layers of the extensive substrate “Sedum Carpet”. The lower layer contained the admixture of 0.5 % by weight of hydrogel (the cross-linked potassium polyacrylate). The upper layer consisted of the substrate “Sedum Carpet” without hydrogel amendment. Models SHR1, SHR2, and SHR3 contained the layer of vegetation - the goldmoss stonecrop (Sedum Acre), while model SH did not contain the plants. The models S and SR contained the uniform layer of extensive substrate “Sedum Carpet” without hydrogel amendment. The model SR contained the vegetation (the goldmoss stonecrop) and S did not contain plants. Models SHR1 and SHR2 were constructed in March 2017, models SH and SHR3 were constructed in November 2017, and models S and SR were constructed in April 2018. The investigations were conducted with use of natural and artificial (simulated) precipitations. The obtained results show that the green roofs can help to reduce the outflow of rainwater from the catchment. The results indicate that in most cases the best retention capacities had models prepared in March 2017, with dense, well-rooted plants and substrate layer amended with hydrogel (SHR1 and SHR2). The similarly constructed model (SHR3) having a less dense and less rooted vegetation layer had a slightly lower retention capacity. In most cases smaller volumes of water were stored in the layers of other models: S (substrate without hydrogel amendment and without plants), SR (substrate without hydrogel amendment + plants), and SH (substrate with hydrogel amendment and without plants). The obtained results indicate that the addition of hydrogel into the growing medium can have a positive effect on the retention capacity of vegetated roof, provided that the antecedent dry period will not be very short. On the other hand, the results show that the hydrogel amendment did not cause a significant increase in retention capacity in the case of model without plants. The obtained results indicate that the vegetation layer plays an important role in the retention of rainwater, especially in the late spring and summer, when the temperatures were relatively high.
EN
Infiltration areas with permeable pavements are one of the most effective modern methods of stormwater management on urban areas that permit accumulation of rainfall directly at place of precipitation. The paper justifies the expediency of inclusion of infiltration areas in the storm drainage system to ensure the effective stormwater management on urban areas. Thus, the aim of this paper is to calculate infiltration areas’ basic parameters following the experimental and theoretical studies undertaken by authors. Based on these studies, a mathematical model of filling and emptying of base layer of infiltration areas by connecting them to the rain drainage systems is determined. As a result the formulae of calculation of the stormwater volume that detained on the infiltration areas, and the drainage discharges that came in the rain drainage system are received and verified. Moreover, obtained results permit to realize stormwater management on urban areas that depend on parameters of infiltration areas and pipe capacity of drainage system.
|
|
tom T. 49
325--332
EN
Starting from the consideration that sustainability of landscape heritage is logically coupled with today’s sustainable development needs, the research explores the general ideas, methods and strategies of ancient Chinese urban water management. Based on the traditional Chinese water management experience from the ancient city of Ganzhou, the paper - analyses the current water landscape heritage in Jiangxi Province, China. Based on the historic experience and knowledge introduced and analyzed in the case study of Ganzhou, it is possible to define rainwater management principles and sustainable development strategies for modern urban landscape that could be the basis of a new research perspective in facing today’s climate anomalies.
PL
Zaczynając od konstatacji, że zrównoważony rozwój dziedzictwa krajobrazowego jest logicznie połączony z dzisiejszymi potrzebami zrównoważonego rozwoju, badania wskazują ogólne pomysły, metody i strategie starożytnej chińskiej miejskiej gospodarki wodnej. Bazując na tradycyjnych chińskich doświadczeniach w zakresie gospodarki wodnej ze starożytnego miasta Ganzhou, artykuł analizuje obecne dziedzictwo krajobrazu wodnego w prowincji Jiangxi w Chinach. W oparciu o historyczne doświadczenie i wiedzę wprowadzoną oraz przeanalizowaną w studium przypadku Ganzhou, możliwe jest zdefiniowanie zasad zarządzania wodą deszczową i strategii zrównoważonego rozwoju dla nowoczesnego krajobrazu miejskiego, które mogłyby być podstawą nowej perspektywy badawczej w obliczu dzisiejszych anomalii klimatycznych.
|
|
tom R.28, nr 4
40--42
PL
Artykuł jest studium przypadku zagospodarowania terenu kompleksu biurowego, stanowiącego serce Business Garden w Warszawie. Metoda badawcza objęła wizję lokalną, wywiady z pracownikami oraz badania literatury naukowej i specjalistycznej. Artykuł opisuje sposób funkcjonowania miejsca pod względem społecznym i przyrodniczym. Rozwiązania technologiczne, wymuszone poprzez mniej korzystne warunki lokalizacyjne, pozwoliły na charakterystyczne ukształtowanie ogrodu pomiędzy budynkami. Jego przestrzeń jest wyłączona z ruchu kołowego, stanowi miejsce rekreacji, pracy na świeżym powietrzu, interakcji międzyludzkich, a także unikalnych dla pracowników biurowych aktywności fizycznych, mając bezpośredni wpływ na poprawę zdrowia, komfortu, jakości i wydajności pracy użytkowników obiektu.
EN
The article is a case study of the development of the office campus, constituting for the heart of the Business Garden in Warsaw. The research method was a site visit, interviews with employees and research in scientific and specialist literature. The article describes how the place functions in terms of social and natural environment. Technological solutions, forced by less favorable site condition, allowed for the characteristic form of the garden located between the buildings. It is a “car-free” zone, which constitutes for a space for recreation, outdoor work, interpersonal interactions, and a place for physical activities unique to the office workers. It has a direct positive impact on the health, comfort, quality and work efficiency of the building occupants.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.