Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  split Hopkinson pressure bar
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A method of tensile testing of materials in dynamic conditions based on a slightly modified compressive split Hopkinson bar system using a shoulder is described in this paper. The main goal was to solve, with the use of numerical modelling, the problem of wave disturbance resulting from application of a shoulder, as well as the problem of selecting a specimen geometry that enables to study the phenomenon of high strain-rate failure in tension. It is shown that, in order to prevent any interference of disturbance with the required strain signals at a given recording moment, the positions of the strain gages on the bars have to be correctly chosen for a given experimental setup. Besides, it is demonstrated that - on the basis of simplified numerical analysis - an appropriate gage length and diameter of a material specimen for failure testing in tension can be estimated.
EN
The results of experimental and numerical analysis of the influence of the non-axisymmetric pulse shaper position on recorded wave signals in the split Hopkinson pressure bar experiment are presented. The paper focuses attention on the problem of wave signal disturbances caused by a bending wave resulting from non-axisymmetric pulse shaper positions and, moreover, different shaper thickness, striker impact velocities and Wheatstone bridge configurations. The obtained results of analyses indicate that the effect of the non-axisymmetric pulse shaper position may be neglected if deviation from the bar axis does not exceed 20%.
EN
This study investigates the characteristics of self-compacting concrete (SCC) reinforced with recycled fibres and their combination with polypropylene fibres, which can be applied to build protective structures. The split Hopkinson pressure bar (SHPB) method was used to subject the mixtures to high strain rates in the range from 140 to 200 s−1 , corresponding to impact loads. It was found that the strain rate sensitivity of both types of mixtures was comparable. The failure pattern confirmed the role of fibres in carrying the loads for strain rates below around 100 s−1 .
EN
The magnetorheological fluid is a functional material that is changing its rheological properties and finally solidifies in a magnetic field. The dynamic behaviour, tested with the use of the Split Hopkinson Pressure Bar is an important issue for description of this material, which is commonly used in different kinds of shock absorbers. This note presents a new idea how to modify the known SHPB set up in order to investigate dynamic properties of magnetorheological materials.
EN
The article proposes the concept of experimental dynamic tests of aggregate behavior - sand used as a material for covering temporary protective shelters for the population and civil defense. These shelters are part of the construction shielding infrastructure useful in crisis situations. Laboratory tests of loose soil, including sand, with impact loads are based on the Split Hopkinson Pressure Bar using a clamp. The work describes both this experimental method and the original laboratory stand for impact tests based on a pneumatic launcher with a projectile - bar. This position was built at the Institute of Civil Engineering of the Military University of Technology taking into account the requirements of generally applicable legal provisions. Examples of preliminary experimental research on the behavior of selected aggregate - dry sand under dynamic load - are presented.
EN
The dynamic increase factor (DIF) of the concrete material strength, obtained using a split Hopkinson pressure bar (SHPB), includes structural effects that do not precisely reflect the real strain-rate effect of concrete. To further clarify the real strain-rate effects of rubberised concrete (RC), an experimental investigation regarding the dynamic compressive response of ordinary concrete (NC) and RC with three rubber contents (10%, 20%, and 30%) was performed in this study. Additionally, based on a dynamic constitutive model, i.e., the Karagozian and Case (K&C) concrete model, numerical SHPB tests were conducted using the LS-DYNA software. According to the experimental results, all parameters of the K&C model were discussed, and the damage factors were modified to satisfy the mechanical properties of RC. After validating the numerical model, it was observed that the experimental DIF included the inertial enhancement and the real DIF. Moreover, because rubber particles effectively reduce the density and improve the deformation capacity of concrete, the real strain-rate effect of RC was found to be more rate-sensitive than that of NC by analysing the radial stress distribution. In addition to lateral inertia, another external source, namely, the interface friction between the specimen and bars, which can produce lateral confinement, was further studied. It was found that interface friction significantly contributes to lateral confinement; however, as the strain rate increased, the impact generally decreased. Finally, the mechanism of the strain-rate effect of RC was clarified.
EN
316L steel specimens with three different shear zones made by SLM (Selective Laser Melting) were subjected to dynamic tests using the Split Hopkinson Pressure Bar method. The effect of high-speed deformation on changes in microstructure was analyzed. In addition, the stress-strain relationship was determined from the SHPB results. To visualize the deformation process of the specimens during the tests, a camera with a high frame rate was used. It was shown that as the plastic deformation increases, the hardness of the material increases. Microstructural analysis of dynamically loaded areas revealed numerous defects. Twinning was found to be the main deformation mechanism. Large plastic deformation and many other microstructural changes such as shear bands, cracks and martensite nucleation were also observed.
PL
Próbki ze stali 316L z trzema różnymi strefami ścinania wykonane metodą SLM (Selective Laser Melting) poddano testom dynamicznym wykorzystując do tego metodę dzielonego pręta Hopkinsona (Split Hopkinson Pressure Bar). Przeanalizowano wpływ odkształceń o dużej szybkości na zmiany w mikrostrukturze. Ponadto na podstawie wyników badań SHPB wyznaczono zależność naprężenie- odkształcenie. W celu zobrazowania procesu odkształcania próbek podczas badań zastosowano kamerę o dużej częstości klatkowania. Wykazano, że wraz ze wzrostem odkształcenia plastycznego wzrasta twardość materiału. Analiza mikrostrukturalna obszarów obciążonych dynamicznie ujawniła liczne defekty. Stwierdzono, że głównym mechanizmem deformacji jest bliźniakowanie. Zaobserwowano również duże odkształcenia plastyczne i wiele innych zmian mikrostruktury, takich jak pasma ścinania, pęknięcia i zarodkowanie martenzytu.
PL
Celem niniejszej pracy jest przedstawienie wybranych aspektów związanych z projektowaniem i badaniem energochłonnych regularnych struktur komórkowych typu 2D wykonanych za pomocą addytywnych technik wytwarzania. Zaproponowana przez autorów metodyka badawcza obejmowała wytwarzanie struktur za pomocą dwóch technik druku 3D zróżnicowanych pod względem technologicznym i możliwości wytwórczych. Metoda FDM (ang. Fused Deposition Modelling) pozwoliła na przeanalizowanie procesu deformacji szerokiego spektrum topologii w zakresie obciążenia quasi-statycznego i udarowego. Z kolei metoda LENS (ang. Laser Engineered Net Shaping) umożliwiła wykonanie struktur ze stopu tytanu Ti6Al4V charakteryzującego się wysoką wytrzymałością mechaniczną. W pracy przedstawiono najważniejsze problemy związane z procesem badania regularnych struktur komórkowych w różnych warunkach obciążenia, w szczególności w warunkach dynamicznego odkształcenia z wykorzystaniem techniki dzielonego pręta Hopkinsona (SHPB). Przedstawiono główne zagadnienia związane z budową stanowiska SHPB oraz opisano specyfikę badania struktur komórkowych w klasycznym układzie prętów Hopkinsona i w układzie tzw. bezpośredniego uderzenia. Ponadto, dokonano obszernego omówienia problematyki modelowania numerycznego deformacji struktur komórkowych, ze szczególnym uwzględnieniem definicji założeń koniecznych do poprawnego ich zamodelowania.
EN
The aim of this paper is to present main issues concerning designing and investigation on 2D regular cellular structures produced using additive manufacturing techniques. Proposed by authors experimental methodology was based on two types of technologically different 3D printings methods with various manufacturing capabilities. FDM (Fused Deposition Modelling) technique allowed to analyze wide spectrum of structure topologies under static and impact loading conditions. LENS (Laser Engineered Net Shaping) method enabled to produce high strength structures made of titanium alloy Ti6Al4V. This paper presents the most important issues related to the testing process of the regular cellular structures under various loading conditions, in particular under dynamic deformation using the split Hopkinson pressure bar technique (SHPB). The main issues concerning the construction of SHPB experimental setup were presented as well as the specificity of the research methodology on cellular materials in two different Hopkinson bar systems: classic and so-called direct impact. In addition, the extensive discussions on numerical modelling of cellular structures deformation was made. In particular, the emphasis of assumptions necessary for their correct modelling was defined.
EN
The purpose of this paper was to determine the mechanical properties of a Ti-6Al-4V titanium alloy produced by traditional CIP (Cold Isostatic Pressing) and by LENS (Laser Engineered Net Shaping), an additive manufacturing process. A reference material, being a commercial Ti-6Al-4V alloy, was also tested. The strength test specimens were produced from a high-quality, Grade 5 titanium powder. Each specimen had its density, porosity, and hardness determined. Compression curves were plotted for the tested materials from the strength test results with static and dynamic loads. These tests were performed on an UTS (Universal Testing Machine) and an SHPB (Split Hopkinson Pressure Bar) stand. The test results obtained led to the conclusion that the titanium alloy produced by CIP had lower strength performance parameters than its commercially-sourced counterpart. The LENS-produced specimens outperformed the commercially-sourced alloy both in static and dynamic load conditions.
PL
Celem niniejszej pracy było wyznaczenie właściwości mechanicznych stopu tytanu Ti-6Al-4V wytworzonego metodą klasycznej metalurgii proszków CIP (ang. Cold Isostatic Pressing) oraz przy użyciu przyrostowej technologii wytwarzania LENS (ang. Laser Engineered Net Shaping). Badaniom poddano także komercyjny stop Ti-6Al-4V jako materiał referencyjny. Próbki do badań wytrzymałościowych przygotowano z wysokiej jakości proszku stopu tytanu gatunku 5. Dla wykonanych próbek materiałowych wyznaczono gęstość, porowatość, a także określono twardość. Ponadto, wyznaczono krzywe ściskania dla badanych materiałów na podstawie rezultatów testów wytrzymałościowych w warunkach statycznego i dynamicznego obciążenia. Wykorzystano do tego celu uniwersalną maszynę wytrzymałościową (UTS, ang. Universal Testing Machine) oraz stanowisko dzielonego pręta Hopkinsona (SHPB, ang. Split Hopkinson Pressure Bar). Na podstawie otrzymanych wyników badań stwierdzono, iż stop tytanu uzyskany metodą klasycznej metalurgii proszków charakteryzuje się niższymi parametrami wytrzymałościowymi od jego komercyjnego odpowiednika. Próbki wykonane technologią LENS cechują się wyższymi parametrami w porównaniu ze stopem komercyjnym zarówno w statycznych jak również dynamicznych warunkach obciążenia.
11
63%
EN
The nickel-based alloy Inconel718 is a multi-component complex alloy. There exists complex cutting deformation, higher cutting temperature, higher cutting force and formation of serrated chip in the machining process. However, the formation time of every saw tooth unit in serrated chip is very short. It is difficult to use traditional method to analyze the chip at any time. Simulation analysis, integrated with the experimental results, was used to study the whole process of cutting deformation. The Johnson–Cook (JC) constitutive model of Inconel718 under high speed and high strain rate is established through split Hopkinson pressure bar (SHPB) test. The finite element method was used to study the deformation process. Combining the analysis of metallographic pictures which were obtained in the cutting experiment, the plastic behavior evolution of material in the cutting zone is deeply studied to further reveal the forming mechanism of serrated chip. The results showed that the local temperature in the cutting zone increased rapidly. The appearance of thermal softening of materials led to the change of stress distribution in the cutting zone. The thermoplastic shear instability further appeared which resulted in the shear localization, subsequently leading to the uneven deformation of chip and then serrated chip formed.
EN
The article assesses the strength and ductility of laser welded joints made of steel Strenx S700MC. The assessment was based on tests results concerning the material structure, hardness as well as quasi-static and dynamic tensile tests. The dynamic tests were performed using the tensile split Hopkinson pressure bar technique and strain rates of 103 s-1. The obtained results revealed that the strength of joints under quasi-static and dynamic tensile test conditions were high and similar, yet their ductility significantly deteriorated under the impact load.
PL
W artykule dokonano oceny wytrzymałości i ciągliwości złączy spawanych laserowo wykonanych ze stali Strenx S700MC na podstawie wyników badań struktury, rozkładu twardości oraz quasi-statycznej i dynamicznej próby rozciągania. Badania dynamiczne na rozciąganie z szybkością odkształcania rzędu 103 s-1 wykonano za pomocą techniki dzielonego pręta Hopkinsona. Uzyskane wyniki wykazały, że o ile wytrzymałość złączy w warunkach quasi-statycznego i dynamicznego rozciągania jest wysoka i zbliżona, to ich ciągliwość znacząco pogarsza się pod wpływem udarowego obciążenia.
EN
The paper analyzes the problem of initial compaction of a non-cohesive soil sample on the example of dry silty sand samples. Two different compaction methodologies were used: I) dynamic compaction - using split Hopkinson pressure bar and II) vibration compaction - using a vibrating shaker. A better result of the compaction process was obtained for dynamic compaction with an initial pressure value of 0.5 bar (small difference in the result - both methods obtained comparable results). The paper also includes a numerical analysis of the calibration of the pneumatic launcher in the Matlab environment on the basis of the system of difference equations. The calibration process was carried out in the initial pressure range from 0.5 to 3.0 bar for three different variants of the barprojectile length: 100 mm, 200 mm and 250 mm and compared with the experimental analysis - the results were consistent.
|
|
tom Vol. 69, nr 2
517--534
EN
To promote the application of rubber-cement composites as the main bearing structure and key components in practical engineering under frequent dynamic disturbances, in this work, the split Hopkinson pressure bar (SHPB) cyclic impact tests of rubber-cement composite specimens with four different confine modes were carried out in which the impact load increased sequentially. The relationship between average strain rate, ultimate strain and impact times and the relationship between peak stress, damage energy, ultimate strain and incident energy were analyzed. The results showed that the appropriate confine reinforcement treatment can make rubber-cement composite give full play to its deformation ability when it was completely damaged. Carbon fiber-reinforced polymer (CFRP) sheet and steel cylinder can work together with the rubber-cement composite matrix to resist impact load, which effectively improves the structural strength, damage fracture energy, and cyclic impact resistance of the rubber-cement composite. Finally, based on the effect difference of confine modes, the simplified plane force models of rubber-cement composite specimens with four different confine modes were established, which clearly revealed the completely different impact resistance mechanism of the rubber-cement composites with different constraints under cyclic impact loading.
15
51%
EN
The paper includes experimental research using the Split Hopkinson Pressure Bar to determine dynamic compression curves and strength dynamic parameters to depend on the strain rate and moisture for silty sand soil samples. Those experiments are oedometric type based in a rigid confining cylinder. Samples of silty sand with fine a fraction content were taken for the study. To ensure sufficiently uniaxial strain of the tested material, the soil samples were placed in properly prepared casings made of duralumin for the needs of the tests. Thanks to the use of measuring strain gauges on the initiating and transmitting bars, as well as the casing, the nature of the loading pulse was obtained, which was then subjected to the process of filtration and data processing to obtain the nature of the incident, reflected and transmitted wave. During the above dynamic experiments with the representative of silty sand soils, it was observed that its dynamic compaction at a high strain rate is different than in the case of the Proctor test. This is due to higher compaction energy, which additionally changes the grain size by destroying the grains in the structure. The paper presents the results of particle size distribution analysis for two different types of soil samples - this type of analysis is unique. Hence experiments should be further continued for such soils with different granulations and various moisture using, for example, Hopkinson measuring bar technique to confirm for other silty sand soils that are often subgrade of various engineering objects.
PL
Artykuł obejmuje edometryczne badania eksperymentalne z wykorzystaniem techniki pręta Hopkinsona do określenia zarówno dynamicznego zachowania jak i zmian struktury dla próbek wybranego ośrodka gruntowego o różnej wilgotności poddanych oddziaływaniu dynamicznemu. Do badania wzięto piasek pylasty (siSa) o zawartości frakcji drobnych fi+fπ = 20,46%. W celu zapewnienia wystąpienia jednoosiowego stanu odkształcenia badanej próbki gruntu umieszczono ją w odpowiednio przygotowanej duraluminiowej osłonie pierścieniowej. Dzięki zastosowaniu tensometrów pomiarowych na prętach inicjującym oraz transmitującym, jak również osłonie zarejestrowano różne impulsy, które następnie poddano procesowi filtracji i obróbki danych, tak aby otrzymać obrazy propagacji sprężystych fal w prętach pomiarowych i w osłonie. Wykorzystując odpowiednie równania oraz zależności zmodyfikowanej metody Kolsky'ego dla trójwymiarowego stanu naprężenia w badanej próbce określono eksperymentalne zależności charakteryzujące zachowanie się próbek gruntu o różnej wilgotności: naprężenie ϭ(t), odkształcenie ε(t) oraz prędkość odkształcenia έ(t) w funkcji czasu. Na tej podstawie uzyskano krzywe ściskania dynamicznego dla różnej wilgotności próbek gruntu pylastego z określonymi wartościami początkowego dynamicznego edometrycznego modułu oraz lokalnych maksymalnych naprężeń plastycznych i odpowiadających im odkształceń. Podczas powyższych eksperymentów dynamicznych z próbkami gruntów typu piasku pylastego zaobserwowano, że jego dynamiczne zagęszczenie przy dużej szybkości odkształcania jest inne niż w przypadku testu Proctora. Wynika to z większej energii zagęszczania, która dodatkowo powoduje zmianę uziarnienia poprzez niszczenie ziaren w strukturze. W pracy przedstawiono wyniki analizy zmian uziarnienia dla dwóch różnych rodzajów próbek gruntu - tego typu analizy są unikalne. W związku z tym należy kontynuować eksperymenty dla takich gruntów o różnych granulacjach i różnej wilgotności, stosując technikę prętów pomiarowych Hopkinsona, w celu potwierdzenia opisanego zjawiska w innych gruntach typu piasku pylastego, które często są podłożem gruntowym dla różnych obiektów inżynieryjnych.
|
|
tom Vol. 67, nr 4
79--89
EN
In order to study the dynamic splitting tensile properties of new and old concrete after high temperature treatment, the effects of different impact velocities and temperatures on failure modes, dynamic splitting strength and energy absorption of new and old concrete were analyzed by impact dynamic splitting tensile test use of variable cross-section Φ 74 mm split Hopkinson pressure bar apparatus. The results show that: Impact velocity and temperature not only affect the dynamic splitting strength of new and old concrete bonding specimens, but also affect the failure modes and degree of breakage. The dynamic splitting strength of new and old concrete increases with the increase of impact velocity, but the increase rate decreased with the increase of temperature. The dynamic splitting strength first increases slowly and then decreases dramatically with the increase of temperature. In the dynamic splitting test of new and old concrete, the energy absorption increases with the increase of impact velocity and decreases with the increase of temperature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.