This paper focuses on an approximate analytical solution of an initial-boundary value problem of spatial-fractional partial differential diffusion equation with RiemannLiouville fractional derivative in space. The spatial correlation of the superdiffusion coefficient as a power-law has been discussed in cases of fast and slow spatial superdiffusion. Approximate closed form solutions in terms of non-linear similarity variable are based on the integral-balance method and series expansion of the assumed parabolic profile with undefined exponent. The law of the spatial and temporal propagation of the solution was the primary issue and discussed in two cases: fast and slow superdiffussion.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.