Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spalanie tlenowo-paliwowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Mercury content in ash of solid fuels
100%
EN
Mercury emission field measurements were conducted for two types of coal from Polish mines. Total mercury content were evaluated in coal and ash on mercury analyzer atomic absorption spectrometer AMA 254. Obtained result shows that brown coal contains more mercury compared to hard coal (289 ppb and 66 ppb respectively for a polydisperse system). Mercury concentration in ashes is several times higher than for coal which means ash may be a good absorber for mercury. Also, application of oxy-fuel technology results in smaller amount of mercury absorbed in the ash which can be related to higher emission of Hg in the gaseous form.
2
100%
EN
Experimental investigations and numerical simulations have been conducted in this study to derive and test the values of kinetic parameters describing oxidation and gasification reactions between char carbon and O2 and CO2 occurring at standard air and oxy-fuel combustion conditions. Experiments were carried out in an electrically heated drop-tube at heating rates comparable to fullscale pulverized fuel combustion chambers. Values of the kinetic parameters, obtained by minimization of the difference between the experimental and modeled values of char burnout, have been derived and CFD simulations reproducing the experimental conditions of the drop tube furnace confirmed proper agreement between numerical and experimental char burnout.
EN
The paper presents a method of the complex system exergy analysis, as well as an example of application in the case of an integrated oxy-fuel combustion (OFC) power plant with CO2 transport and storage. Complex exergy analysis consist of (a) local exergy losses, (b) cumulative exergy consumption, (c) cumulative exergy losses and (d) cumulative degree of thermodynamic perfection. The algorithms of the complex system exergy analysis are based on "input-output method" of the direct energy and material consumption. In the structure of the balance we distinguished main products (e.g. electricity), by-products (e.g. nitrogen) and external supplies (e.g. hard coal). The considered system (OFC power plant with CO2 transport and storage infrastructure) consists of seven interconnected modules, viz. boiler island, steam cycle, air separation unit, cooling water and water treatment module, flue gas quality control module, CO2 processing unit and CO2 transport and storage module, among which there also exist feedback relations.
EN
The combustion of coal in mixture of pure O2 and recycled flue gas is one variant of a novel combustion approach called oxy-fuel combustion. Conventional boilers use air for combustion in which the nitrogen from the air (approximately 79% by volume) dilutes the CO2 concentration in the flue gas. The capture of carbon dioxide from such dilute mixtures using amine stripping is relatively expensive. The recycled flue gases mainly consist of CO2 and H2O and are used to create combustion conditions similar to those of air. Spherical coal particles of 10 mm in diameter were combusted in the mixtures of O2/CO2 in a 10 kW bench scale unit at a temperature of 700-85O°C.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.