Novel types of internally reinforced thin-walled beams are subjected to a feasibility analysis in terms of their effective mechanical behaviour. The novel beams are subjected to bending and torsion uncoupled loadings and are analysed in terms of their stiffness behaviour in static analysis. The models were built using the commercial Finite Element Method (FEM) software ANSYS Mechanical APDL. The feasibility of the models was determined by the comparison of the stiffness behaviour of the novel beams with simple hollow-box beams, having the same mass and dimensions, with the exception of the thickness. An efficiency parameter is used in order to determine the feasibility of the studied geometries. It is found that the novel geometries represent a great improvement under bending loading, better than under torsion loading. Nevertheless, for bending and torsion combined loadings, if bending loads are predominant, the beams can still be interesting for some applications, in particular those with mobile parts.
Dispersion as the material property is discussed in the paper. The definition, origination and dispersion analysis are presented. The dispersive and non-dispersive constitutive models are studied. The mechanical problem of inelastic deformation of solids is considered. The evolution of viscoplastic flow describes material hardening and softening with formation of strain localization zone. Wave character and dispersion are recognized as fundamental elements in formulation and solution in dynamic, rate dependent processes with strain localization and shear band propagation. The physical and numerical aspects of dispersion clarify the development of deformation, stress or energy distribution and verify the solution procedure. The paper exposes the importance of dispersion phenomenon that should be carefully investigated in class of solid mechanics problems. The numerical results confirm the role of dispersion effects.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.