Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  soil steel composite bridge
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The construction sector is a major source of greenhouse gases. Under the increasing concern about climate change and growing construction activities, the whole sector is challenged to shift focus toward sustainable solutions. The traditional procurement often prioritizes technical and economic viability, while their environmental performance is overlooked. Today’s designers are urged to seek new design options to reduce environmental burdens. Sweden owns more than 24574 bridges, most of which are short spans. Among them, the slab frame bridge (CFB) is a common solution. Soil steel composite bridge (SSCB), alternatively, is a functional equivalent solution to CFB and shows advantages in low cost and easy construction. This paper compares the environmental performance between these two bridge types based on life cycle assessment (LCA). The analysis and its results show that the SSCB is preferable over CFB in most of the examined environmental indicators.
|
|
tom Vol. 70, nr 3
561--578
EN
Corrugated steel structures buried in the surrounding soil are currently used worldwide in road and railway engineering as culverts, pedestrian and animal crossings, tunnels and bridges. The need of large span corrugated steel structures is rapidly growing however their behavior analysis is still understudied. There is also a lack of discussion about the impact of additional strengthening elements for the behavior of corrugated steel structures. This study analyses the influence of rational steel mesh layout on the behavior of a large span deepest corrugation steel structure. The numerical two-dimensional model of two-radius 17.5 m span profile with corrugation of 237 mm depth and 500 mm pitch was developed to replicate the ongoing project in Lithuania. Originally the stiffness of the structure from both sides was increased by six layers of steel meshes as lateral support. Nevertheless, the current study was looking for rational steel mesh layout. Also, the influence of different layouts of steel mesh on corrugated steel plate utilization to buckling failure in the peaking, dead load and in the most unfavorable live load location phase was analyzed. The finite element model results indicated that steel meshes could be used to control structure deformations and internal reactions. Vertical displacement of the crown of the structure could be reduced by 45% in the peaking phase when using proper steel meshes layout. Furthermore, steel meshes could be a decisive factor for the bearing capacity of corrugated steel structure in a positive sense.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.