Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  soil loss
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 20, nr 2
44--50
EN
The knowledge on the spatial variability and hydrological behaviour of contributing areas to specific outlet is a fundamental input for developing appropriate water resource planning and management actions that take part in various areas of human activities. The aim of this contribution is to present the possibilities to assess the precipitation-runoff process and soil erosion risk in a specific area using the theoretical approaches with the simplest requirements for meteorological and surface runoff data. Considering the connectivity and behaviour of natural processes, the analysis of precipitation-runoff process and soil erosion risk is crucial prior to the design of technical water management practices and technical erosion control measures in the landscape. The characteristics of design rain, e.g. the intensity, annual frequency and duration can be determined using practical tools or according to the analysis of the cost and damages related to specific technical measure. The intensity of design rain can be estimated according to the long-term meteorological observations and intensity-duration-frequency curves developed using region specific equations (Dub’s formula, Urcikan’s formula). For the design of water management, conservation (especially erosion) or other measures for ecological stabilization and protection of the area, it is important in particular to determine the following characteristics of surface runoff: beginning of surface runoff, design discharge from the contributing area, the depth of the surface runoff, and the volume of surface runoff. Estimating the soil erosion risk by water erosion can be done according to the slope gradient or USLE calculation and subsequent comparison of estimated value with tolerable soil loss. Regardless of the location of specific areas, we have found that the design parameters of water management and technical erosion control practices, facilities and measures, including their localization can be determined by applying and modifying the existing theoretical and practical hydrological knowledge. We also found that this design cannot be executed without an analysis of the precipitation-runoff process and the erosion risk of this territory. In relation to the climate change and changing rainfall patterns in all regions worldwide, further studies should be conducted to specify the regional characteristics of precipitation, soil and its usage.
EN
Soil erosion is a major factor leading to dams’ siltation and reducing their storage capacity. This study mapped the hot spots of soil erosion areas to predict the soil erosion/siltation in the Ghiss basin/dam (northeastern Morocco). In this context, various data has been prepared in the geographical information system for the estimation of soil erosion by integrating the universal soil loss equation (USLE). The result of this study revealed that soil loss rate ranges between 0 and 19 t∙ha−1∙yr−1. Therefore, the hot spots in the soil erosion area are to be found upstream, potentially leading to dam siltation over time. To avoid Ghiss dam siltation, we suggest terrace farming and reforestation in the soil erosion area hot spots.
EN
The decrease in the agricultural efficiency is associated with the influence of wind erosion, the consequence of which is a decrease in the soil fertility. Significant effects of wind erosion are typical of the arid and semi arid zones with a small amount of precipitation, high air temperature and degree of evaporation, reinforced by strong winds and low differentiation of plant protection. It has been proven that the intensity of the effects of deflation processes depends on the physical and geographical conditions of the distribution of agricultural land, systematic soil protection activities and the availability of vegetation. It has been established that the acceleration of the deflation processes occurs in the territories with increased anthropogenic pressure, which leads to ecological disturbance of the natural balance characterizing territorial ecosystems. In the course of the studies it was found that the natural processes of wind erosion are significantly enhanced by the absence of a scientifically-based and ecological land development system of agriculture, which leads to destruction of the soil cover, reduction of soil fertility, damage to the agricultural crops and, thus, the economic damage. As a result of application of the GIS and ERS technologies, the empirical-statistical model of the possible soil loss due to wind erosion in the territory of the Steppe zone of Ukraine, it has been found that in the course of the deflation processes in the territory taken by naked fallow upon the absence of the conditions for the deflation resistance activities, the value of soil loss at the epicenter of dust storms can reach about 600 t / ha. Studies proved the importance of the deflation resistant action of the vegetation cover, which tends to an increase in the erosion dangerous (favorable) areas of agricultural land by 1.7 times, which reduces the soil loss by 5.62 times. In accordance with the intensity of the effects of the deflation processes and the increase of the soil losses, the contour and land development deflation resistance activities with elements of soil protection agriculture were proposed.
EN
The Agricultural Payments Agency (supervisory and registry authority) of the Slovak Republic has announced an erosion hazard layer to meet the requirements of GAEC5 (Minimising soil erosion. Limit soil erosion by putting in place suitable practical measures). If a farmer fails to observe the layer data, they will be fined and might lose access to direct subsidies (also known as direct payments). The layer that has been announced raises a number of questions and concerns amongst beneficiaries of direct subsidies and users of land parcels. For instance, with the Pastuchov land parcel, the uncertainties associated with the application of GAEC5 were raised. A comparison of the water erosion layer commitment for 2023 with the erosion calculated by the Universal Soil Loss Equation (USLE) method based on the Digital Relief Model (DRM) generated from airborne laser scanning has confirmed the uniformity in all classified categories of water erosion over a 65% land parcel area. The situation of the land user has been diminished (i.e. they have to comply with GAEC5 even when there is no reason to) over 11% of the area. The situation of the land user has improved over 24% of the area (i.e. they do not have to comply with the conditions even when there is reason to). This paper describes the problems and outlines the possibilities for the necessary adjustment of compliance with the GAEC5 conditions in Slovakia.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.