Due to a low level of erosion the Variscan (Carboniferous–Mississippian) Kłodzko–Złoty Stok (KZS) granitoid pluton and its metamorphic rock cover are unique examples of the ore mineralisation distribution pattern around a pluton. The KZS pluton formed from I-type magmas. It is composed mostly of high-K, metaluminous, biotite- and hornblende-rich granitoids of various compositions ranging from granodiorite to monzonite. The ore mineralisation in the KZS shows specific zonation that reflects interaction between post-magmatic mineralising fluids and country rocks of different composition. In the KZS pluton and its surroundings the mineralisation reveals high-temperature Ti-W oxides and As-Fe sulphide-arsenides plus Fe-oxides which are replaced outwards by Cu-Fe-Pb-Zn sulphides and subsequently, in the marginal parts of the pluton, by the Pb-Sb-Fe sulphide mineralisation. The specific elements and the isotopic composition of sulphur in ore minerals indicate that the metal-bearing postmagmatic-metamorphic hydrothermal fluids, despite their strong affinities to the KZS hybrid magmatic fluids, show also an influence of variable composition of country rocks. Variable alteration processes: hornfelsitisation, skarnisation, dolomitisation, serpentinitisation, pyroxenisation, biotitisation, K-feldspatisation, silicification, berezitisation, carbonatisation, prehinitisation, chloritisation, epidotisation, sericitisation, albitisation and sulphidisation developed along contacts of various rock types within the country rocks. In more fractured zones, transported elements were preferentially trapped by calcareous (Ca-rich) metamorphic rocks. Moreover, along the direct contact between granitoids and calcareous rocks a high temperature auriferous skarns with magnetite-pyrrhotite or/and löllingite-arsenopyrite mineralisation were formed. There are positive correlations between organic matter and Fe2O3 and MgO contents in skarns, suggesting remobilization of organic matter by hydrothermal fluids released during serpentinisation. The organic matter and carbonate samples have very variable δ13C and δ18O values. Most probably these are the result of isotopic re-equilibration between minerals under high temperatures. On the intimate contact of granitoids with less permeable amphibolitic hornfelses a high temperature titanite-scheelite mineralisation of veinlet-impregnation type occurred, while thermal and metasomatic alteration of the enveloping more permeable sandstones developed away from direct contact with granites, causing the formation of pyrite-rich beresites. As a rule, different types of sulphide ore mineralisation contain refractory gold captured by arsenopyrite, löllingite and/or pyrite. Moreover, the formation of contact-metasomatic ore mineralisation was accompanied by ore precipitation in veins and stockworks at a wide temperature range from 480 to 150°C during early and late fracturing stages. The younger stages also revealed variable concentration of gold. All those observations strongly indicate that the whole KZS pluton and its aureole was fertile in gold.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper presents an experiment on acoustic excitation of electromagnetic radiation (EMR) signals in skarn, sandstone, and magnetite ore samples. For the skarn and sandstone samples, the EMR signal amplitude was observed to decrease with increasing ultimate strength. Supposedly, this effect can be explained by assuming that EMR is generated when an acoustic wave propagates through an electrical double layer. The presence of piezoelectric inclusions (e.g., quartz) in the magnetite ore enhances the analog EMR signal and its spectral components.
Dovyrenite, simplified formula Ca6Zr[Si2O7]2(OH)4, occurs as an accessory mineral in vein skarns developed in carbonate xenoliths in subvolcanic layered plagiodunite-troctolite series in the Ioko-Dovyren Massif of Proterozoic age, Northern Baikal Region, Buryatia, Russia. Dovyrenite is a late mineral of altered pyroxene and melilite-monticellite skarns. Associated minerals are Zr-bearing phases: fassaitic pyroxene, perovskite and hydrogarnets; and also monticellite, vesuvianite, diopside, foshagite, brucite, calzirtite, tazheranite, baghdadite, apatite, calcite, native bismuth, sphalerite, selenian galena, clausthalite, safflorite, rammelsbergite, pyrrhotite, pentlandite, valleriite, laitakarite, nickeline, nickel-skutterudite. The verage structure of dovyrenite is orthorhombic, space group Pnnm, with subcell parameters A = 5.666(16) , B = 18.844(5) , C = 3.728(11) , V = 398.0(2) 3 and Z = 1. Dovyrenite shows a new type of modular structure with stacking of the tobermorite-like and the rosenbuschite-like layers parallel to (010). Single-crystal structural data point to an incompletely occupied Ca(2) site from the rosenbuschite module which is confirmed by microprobe analyses: ZrO2 16.47, SiO2 32.83, TiO2 0.14, HfO2 0.16, Cr2O3 0.01, CaO 43.87, FeO 0.25, MgO 0.13, MnO 0.02, Nb2O3 0.03; total 99.38 wt% with calculated H2O. The empirical formula is (Ca5.73Fe0.03Mg0.02)5.78(Zr0.98Hf0.01Ti0.01)1Si4(O13.56OH0.44)14(OH)4. The presence of two types of OH group in the dovyrenite structure is corroborated by FTIR and Raman spectroscopy. Dovyrenite is an optically positive biaxial mineral: 1.659(2), 1.660(2); 1.676(2); 2Vz 30(5)° (measured), 28° (calculated).
PL
Nowy minerał dovyrenit Ca6Zr[Si2O7]2(OH)4 został stwierdzony w skarnowanych ksenolitach węglanowych w skałach subwulkanicznych, w obrębie warstwowanego ultrabazytowo-bazytowego Masywu Dovyreńskiego wieku proterozoicznego (Buriatia, Przybajkale Północne, Rosja). Dovyrenit jako minerał akcesoryczny tworzy się kosztem minerałów cyrkonowych oraz minerałów zawierających domieszki cyrkonu, które należą do wczesnych asocjacji skarnów piroksenowych imelilitowo-monticellitowych. Minerały zawierające domieszki cyrkonu reprezentowane są przez piroksen fassaitowy, perowskit oraz hydrogranaty, natomiast z cyrkonowych minerałów rozpoznano kalzyrtit, tazheranit, baghdadyt. W asocjacji z dovyrenitem występują także: monticellit, wezuwian, diopsyd, foshagit, brucit, apatyt, kalcyt, bizmut rodzimy, sfaleryt, saffloryt, rammelsbergit i inne. Ogólna struktura dovyrenitu ma symetrię rombową (grupa przestrzenna Pnnm) z parametrami subkomórki: A = 5,666(16) , B = 18,844(5) , C= 3,728(11) , V = 398,0(2) 3 and Z = 1. Dovyrenit posiada nowy typ struktury modulowanej zbudowanej z warstw podobnych do warstw wyodrębnionych w strukturach tobermorytu oraz rosenbuschitu. Tobermorytopodobne i rosenbuschitopodobne warstwy w strukturze dovyrenitu ułożone są na przemian równolegle do (010). Dane udokładnienia struktury dovyrenitu wskazują na niepełne obsadzenie pozycji Ca(2) w warstwie rosenbuschitopodobnej, co odpowiada danym analizy mikrosondowej: ZrO2 16,47; SiO2 32,83; TiO2 0,14; HfO2 0,16; Cr2O3 0,01; CaO 43,87; FeO 0,25; MgO 0,13; MnO 0,02; Nb2O5 0,03; suma tlenków równa się 99,38%wag.wraz z dodaną H2O obliczeń na podstawie bilansu ładunku. Empiryczny wzór krystalochemiczny dovyrenitu (Ca5,73Fe0,03Mg0,02) 5,78 (Zr0,98Hf0,01Ti0,01) 1Si4(O13,56OH0,44) 14(OH)4 potwierdza niedobór wapnia w pozycji Ca(2) w porównaniu ze wzorem idealnym. Dovyrenit jest minerałem optycznie dodatnim, dwuosiowym: 2Vz 30(5)° (zmierzony), 28° (obliczony); 1,692(2), 1,660, 1,767(2). Parageneza „monticellit-foshagit-dovyrenit” wskazuje na wąski przedział temperaturowy krystalizacji dovyrenitu: 560–630°C w warunkach subwulkanicznych (P < 108 Pa).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.