Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  skafold
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Makroporowate tworzywa oparte na ortofosforanach wapnia (CaPs, Calcium Phosphates), głównie hydroksyapatycie i ?-TCP, cieszą się nadal dużym zainteresowaniem ze względu na już istniejące oraz pojawiające się nowe możliwości ich aplikacji. Materiały te mają właściwości sprzyjające i stymulujące formowanie się kości, co czyni je interesującymi kandydatami dla medycyny regeneracyjnej oraz inżynierii tkankowej. Celem pracy było otrzymanie oraz charakterystyka wysokoporowatych tworzyw opartych na CaPs. Makroporowata bioceramika: HAp i dwufazowa (BCP) o porowatości od 74 do 84% została wytworzona metodą odwzorowania porowatej matrycy organicznej. Określono wpływ warunków wypalania na parametry otrzymanych tworzyw: skład fazowy, porowatość, skurczliwość liniową wypalania i wytrzymałość mechaniczną. Zbadano również wpływ środka powierzchniowo czynnego dodanego do zawiesin na właściwości tworzyw finalnych. Ustalono zależność pomiędzy porowatością otrzymanych tworzyw a ich wytrzymałością na ściskanie.
EN
Macroporous calcium phosphate based materials (CaPs), mainly hydroxyapatite and ?-TCP, are still of great interest because of the already existing and arising new fields for their applications. Those materials possess superior properties for the stimulation of bone formation which make them attractive candidates for regenerative medicine and tissue engineering. The aim of this study was the fabrication and characterization of highly porous CaPs based materials. Macroporous bioceramics: HAp and biphasic (BCP) with porosity from 74 to 84% were produced by replacement of the porous organic matrix. The influence of the heating conditions on the parameters of the obtained materials, namely the phase composition, porosity, linear shrinkage and mechanical strength was investigated. The effect of the surfactant, added to the slurries, on the characteristic of the final materials was also determined. The correlation between the compressive strength and the porosity of the obtained materials was determined.
2
100%
PL
Obecnie wszystkie obszary medycyny regeneracyjnej skupiają się na poprawie jakości życia ludzkiego, poprzez zastępowanie brakujących lub uszkodzonych tkanek i organów na drodze odbudowy odpowiednich struktur organizmu. Nowa, w pełni funkcjonalna, żywa tkanka wytwarzana jest na bazie komórek, zazwyczaj osadzonych na matrycy lub skafoldzie, wspomagających jej rozwój. Nasz artykuł stanowi krótki przegląd literatury dotyczącej bieżących badań nad biomateriałami przeznaczonymi dla medycyny regeneracyjnej. Ze względu na szeroki zakres tematyki poszczególne książki oraz artykuły z tego obszaru nauki skupiają się na różnorodnych aspektach medycyny regeneracyjnej, natomiast poniższy artykuł stanowi ogólne omówienie bioceramicznych skafoldów przeznaczonych do odbudowy tkanki kostnej. Zaprezentowano w nim między innymi definicję inżynierii tkankowej oraz podział medycyny regeneracyjnej. W wyniku poważnego uszkodzenia tkanki zniszczeniu ulegają zarówno komórki jak też tzw. macierz zewnątrzkomórkowa (extracellural matrix, ECM). Ponieważ tkanki są wysoko zorganizowanymi strukturami, składającymi się nie tylko z komórek ale również z matrycy, dlatego w celu wytworzenia nowej tkanki należy zapewnić im syntetyczny lub naturalny substytut macierzy zewnątrzkomórkowej. Skafold stanowi trójwymiarowy substytut ECM służący jako konstrukcja niezbędna dla adhezji, proliferacji i migracji komórek. Prezentowany artykuł zawiera podstawowe informacje oraz wskazówki dotyczące projektowania systemów zapewniających uzyskanie prawidłowo funkcjonujących tkanek. Właściwości fizykochemiczne oraz biologiczne materiału, takie jak: biozgodność, bioaktywność, bioresorbowalność, chemia powierzchni, właściwości mechaniczne czy porowatość, są kluczowe do osiągnięcia sukcesu w aplikacji rusztowań komórkowych. Przedstawione zostały różne metody otrzymywania skafoldów charakteryzujących się odpowiednią porowatością i rozkładem wielkości porów. W artykule przedyskutowane oraz podsumowane zostały zagadnienia dotyczące charakterystyki materiału oraz możliwości osiągnięcia odpowiedniego składu, mikrostruktury i chemii powierzchni, którym należy sprostać, aby spełnić oczekiwania stawiane idealnym biomateriałom dwudziestego pierwszego wieku przeznaczonym na skafoldy kostne.
EN
Nowadays whole fields of regenerative medicine have a main aim to improve the quality of human life by replacing missing or damaged tissues and organs through rebuilding suitable body structures. The new, fully functional living tissue is fabricated using cells which are usually associated with matrix or scaffold to guide tissue development. Our article is a brief review of the literature regarding current research focused on the biomaterials for regenerative medicine. While certain, accessible books and journal articles address various aspects in the above broad field of science, this is the comprehensive text focusing on the bioceramic scaffolds for bone tissue engineering. Among others the definition of tissue engineering and classification of regenerative medicine was presented. When the tissue is severely damaged not only large number of cells but also extracellular matrix (ECM), are lost. Because tissue represent highly organized structure consisting of cells but also a matrice we should provide an artificial or biologically derived matrice substitute for cells to create a new tissue. Scaffold servers as a three dimensional ECM analog which acts as a construction required for adhesion, proliferation and migration of cells. Presented article includes basic information and suggestion for developing systems needed to produce properly functioning tissues. The physicochemical and biological properties of the material, such as: biocompatibility, bioactivity, biodegradability, surface chemistry, mechanical properties and porosity are inherent in the success of the scaffold application. Various methods of obtaining scaffolds with appropriate porosity and pore size distribution were presented. The article discuss and summarized challenges according to material characteristic and the opportunities for tailoring their composition, microstructure and surface chemistry to meet the properties of ideal biomaterials for twenty-first century bioceramic scaffolds.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.