This paper presents the problem of the active vibration control of a simply-supported circular plate. The plate is excited by an uniform force over the bottom surface generated by a lodspeaker. The axially-symmtrical vibrations of the plate are measured by the application of the four accelometers located along the plate radius. The mathematical model of the plate was obtained by using analytical methods, as well as, on a base of regisrtation of a system response on a fixed excitation (a parametric system identification procedure has been employed). Firstly, a modal model for the vibration of the considered structure is presented and the state realisation of the model is given. Secondly. the OE (Output Error) identification method is used to derive the reduced linear model in the form of a transfer function of the second order. The obtained model is used to develop the linear feedback control algorithm for the cancellation of vibration by using the point force provided by a shaker (SIMO system). Finally, the laboratory results obtained for the considered plate are presented. The results show that in the chosen low-frequency limit the designed structure of a closed-loop system provides a substantial vibration suppression.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.