Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sieci społecznościowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 8
230--234
PL
W artykule przedstawiono rezultaty badań metod, które pomogą tworzyć bazę danych o użytkownikach z wykorzystaniem serwisów internetowych jako podstawowego źródła informacji. Celem badania było pozyskanie danych o użytkownikach z sieci społecznościowej, sprawdzenie możliwości parsera oraz analiza efektywności wykorzystania utworzonej bazy danych. W badaniach zostały wykorzystane metody analizy tekstowej: parsing i scraping. Wyniki zostały przedstawione w postaci wykresów i poddane krytycznej analizie porównawczej.
EN
The article presents the results of a study that will help for user to create a end-user parameters database using other web-sites as the primary source. The main goal of the work is making analysis to obtain information about the user of social networks. Next goal is analysis of the gathering data and the possibility of their use. The experiment was done using two methods of text analysis: parsing and scraping. The results are presented graphically and critical compared to each other.
2
Content available remote Extending Word2Vec with domain-specific labels
80%
|
|
tom Vol. 30
157--160
EN
Choosing a proper representation of textual data is an important part of natural language processing. One option is using Word2Vec embeddings, i.e., dense vectors whose properties can to a degree capture the “meaning” of each word. One of the main disadvantages of Word2Vec is its inability to distinguish between antonyms. Motivated by this deficiency, this paper presents a Word2Vec extension for incorporating domain-specific labels. The goal is to improve the ability to differentiate between embeddings of words associated with different document labels or classes. This improvement is demonstrated on word embeddings derived from tweets related to a publicly traded company. Each tweet is given a label depending on whether its publication coincides with a stock price increase or decrease. The extended Word2Vec model then takes this label into account. The user can also set the weight of this label in the embedding creation process. Experiment results show that increasing this weight leads to a gradual decrease in cosine similarity between embeddings of words associated with different labels. This decrease in similarity can be interpreted as an improvement of the ability to distinguish between these words.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.