Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sieć wektorów podtrzymujących
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule opisano problematykę związaną z elektroencefalograficznym badaniem słuchu. Ze względu na to, że obecne metody opierają się głównie na interpretacji przebiegów czasowych elektroencefalogramów i wymagają od badającego neurologa dużego doświadczenia, podjęto się zadania, które ma na celu eliminację subiektywnej oceny wyników oraz zautomatyzowanie badania. Autorzy korzystając z metod CPS wyodrębnili cechy dystynktywne potencjałów wywołanych dobrze różnicujące przypadki prawidłowe od patologicznych.
EN
The paper describes the problems associated with electroencephalographic examination hearing. Due to the fact that the current methods are mainly based on the interpretation of the timing electroencephalograms and require a large experience of examining neurologist, it was a task that aims to eliminate the subjective evaluation of results, and test automation. The authors use the CPS methods have identified distinctive features of evoked potentials well differentiating normal form pathological cases.
2
Content available MLP and SVM classifiers for fault detection
67%
|
|
tom nr 2
149-167
EN
The paper presents a comparative analysis of two of the most important neural network classifiers: the multilayer perceptron (MLP) and Support Vector Machine (SVM) in application to diagnostic problems. The structure as well as learning algorithms of both networks have been presented and compared. The results of numerical experiments comparing the performance of both classifiers on the artificial and real life problems are presented and discussed.
PL
Praca przedstawia dwa rozwiązania klasyfikatorów neuronowych na potrzeby diagnostyki. Jednym z nich jest perceptron wielowarstwowy (ang. MultiLayer Perceptron - MLP), drugim sieć wektorów podtrzymujących (ang. Support Vector Machine (SVM). Przedstawiono struktury oraz podstawowe metody uczenia takich sieci. Działania obu klasyfikatorów sprawdzono i porównano na problemach testowych, zarówno typu syntetycznego, jak i problemie rzeczywistym rozpoznawania uszkodzeń elementów w rzeczywistym układzie filtru elektrycznego.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.