Istnieje wiele opracowań na temat sztucznych sieci neuronowych [SSN]. najpopularniejszą siecią neuronową jest percepton wielowarstwowy, a jest to nic innego jak nieliniowa regresja i analiza dyskryminacyjna, które można zaimplementować przy uzyciu standardowego oprogramowania statystycznego. Niniejszy artykuł ma na celu pokazanie niektórych związków pomiędzy sieciami neuronowym, a modelami statystycznymi.
EN
The ability of neural networks to learn and generalize has gained massive publicity. In fact, the most commonly used artificial neural networks, called multilayer perceptions, are nothing more than nonlinear regression and discriminate models that can be implemented with standard statistical software.
Niewielkie uszkodzenie łożysk tocznych może prowadzić do poważnej awarii urządzenia. Zatem, bardzo ważnym jest wykrycie takich defektów na ich początkowym etapie powstawania aby zapobiec dalszym uszkodzeniom. W pracy przedstawiono kilka wybranych teoretycznych narzędzi z obszaru sztucznej inteligencji zastosowanych do rozwiązania problemu diagnozowania uszkodzeń łożysk tocznych. Rozważanymi narzędziami są: algorytm k najbliższych sąsiadów, drzewo decyzyjne, maszyna wektorów podpierających, perceptron wielowarstwowy, sieć bayesowska oraz sieć neuronowa o radialnych funkcjach bazowych. Rezultaty wszystkich eksperymentów zostały otrzymane z wykorzystaniem rzeczywistych danych oraz aplikacji WEKA (ang. Waikato Environment for Knowledge Analysis) dostępnej na stronach Uniwersytetu Waikato w Nowej Zelandii.
EN
Minor roller bearing damage may lead to serious failures of the device. Thus, it is very important to detect such damage as early as possible to prevent further damage. This paper presents a selection of several theoretical tools from the field of artificial intelligence and their application in roller bearings fault classification. The considered tools are: k-nearest neighbor algorithm, decision tree, support vector machine, feed forward neural network (multilayer perceptron), Bayesian network and neural network with radial basis functions. All numerical experiments presented in the paper were performed with the use of real - world dataset and WEKA (Waikato Environment for Knowledge Analysis) software, available at the server of the University of Waikato.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.