Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sieć konwolucyjna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
PL
W artykule przedstawiono wyniki oryginalnych badań nad zastosowaniem sieci neuronowej wykorzystującej techniki głębokiego uczenia w zadaniu identyfikacji tożsamości na podstawie obrazów twarzy zarejestrowanych w zakresie widzialnym i w podczerwieni. W badaniach użyte zostały obrazy twarzy eksponowanych w zmiennych ale kontrolowanych warunkach. Na podstawie uzyskanych wyników można stwierdzić, że oba badane zakresy spektralne dostarczają istotnych ale różnych informacji o tożsamości danej osoby, które się wzajemnie uzupełniają.
EN
The paper presents the results of the original research on the application of a neural network using deep learning techniques in the task of identity recognition on the basis of facial images acquired in both visual and thermal radiation ranges. In the research, the database containing images acquired in various but controlled conditions was used. On the basis of the obtained results it can be established that both investigated spectral ranges provide distinctive and complementary details about the identity of an examined person.
2
100%
PL
W artykule przedstawiona została propozycja wykorzystania inżynierskich technik akwizycji danych i metod głębokiego uczenia do obiektywnej analizy obrazów tworzonych w trakcie wywiadu przez pacjentów z zaburzeniami neurodegeneracyjnymi.
EN
The article presents a proposal of using engineering data acquisition techniques and deep learning methods for an objective analysis of images created during the history-taking in patients with neurodegenerative disorders.
|
|
tom Vol. 34, no. 1
105--117
EN
Unmanned underwater vehicles are typically deployed in deep sea environments, which present unique working conditions. Lithium-ion power batteries are crucial for powering underwater vehicles, and it is vital to accurately predict their remaining useful life (RUL) to maintain system reliability and safety. We propose a residual life prediction model framework based on complete ensemble empirical mode decomposition with an adaptive noise-temporal convolutional net (CEEMDAN-TCN), which utilizes dilated causal convolutions to improve the model’s ability to capture local capacity regeneration and enhance the overall prediction accuracy. CEEMDAN is employed to denoise the data and prevent RUL prediction errors caused by local regeneration, and feature expansion is utilized to extend the temporal dimension of the original data. The NASA and CALCE battery capacity datasets are used as input to train the network framework. The output is the current predicted residual capacity, which is compared with the real residual battery capacity. The MAE, RMSE and RE are used as the evaluation indexes of the RUL prediction performance. The proposed network model is verified on the NASA and CACLE datasets. The evaluation results show that our method has better life prediction performance. At the same time, it is proved that both feature expansion and modal decomposition can improve the generalization ability of the model, which is very useful in industrial scenarios.
EN
A crucial element in the diagnosis of breast cancer is the utilization of a classification method that is efficient, lightweight, and precise. Convolutional neural networks (CNNs) have garnered attention as a viable approach for classifying histopathological images. However, deeper and wider models tend to rely on first-order statistics, demanding substantial computational resources and struggling with fixed kernel dimensions that limit encompassing diverse resolution data, thereby degrading the model’s performance during testing. This study introduces BCHI-CovNet, a novel lightweight artificial intelligence (AI) model for histopathological breast image classification. Firstly, a novel multiscale depth-wise separable convolution is proposed. It is introduced to split input tensors into distinct tensor fragments, each subject to unique kernel sizes integrating various kernel sizes within one depth-wise convolution to capture both low- and high-resolution patterns. Secondly, an additional pooling module is introduced to capture extensive second-order statistical information across the channels and spatial dimensions. This module works in tandem with an innovative multi-head self-attention mechanism to capture the long-range pixels contributing significantly to the learning process, yielding distinctive and discriminative features that further enrich representation and introduce pixel diversity during training. These novel designs substantially reduce computational complexities regarding model parameters and FLOPs, which is crucial for resource-constrained medical devices. The outcomes achieved by employing the suggested model on two openly accessible datasets for breast cancer histopathological images reveal noteworthy performance. Specifically, the proposed approach attains high levels of accuracy: 99.15 % at 40× magnification, 99.08 % at 100× magnification, 99.22 % at 200× magnification, and 98.87 % at 400× magnification on the BreaKHis dataset. Additionally, it achieves an accuracy of 99.38 % on the BACH dataset. These results highlight the exceptional effectiveness and practical promise of BCHI-CovNet for the classification of breast cancer histopathological images.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.