Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  shockwaves
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Strong shockwaves generate entropy quickly and locally. The Newton-Hamilton equations of motion, which underly the dynamics, are perfectly time-reversible. How do they generate the irreversible shock entropy? What are the symptoms of this irreversibility? We investigate these questions using Levesque and Verlet’s bit-reversible algorithm. In this way we can generate an entirely imaginary past consistent with the irreversibility observed in the present.We use Runge-Kutta integration to analyze the local Lyapunov instability of nearby “satellite” trajectories. From the forward and backward processes we identify those particles most intimately connected with the irreversibility described by the Second Law of Thermodynamics. Despite the perfect time symmetry of the particle trajectories, the fully-converged vectors associated with the largest Lyapunov exponents, forward and backward in time, are qualitatively different. The vectors display a timesymmetry breaking equivalent to Time’s Arrow. That is, in autonomous Hamiltonian shockwaves the largest local Lyapunov exponents, forward and backward in time, are quite different.
EN
We analyze the time-reversible mechanics of two irreversible simulation types. The first is a dissipative onedimensional heat-conducting oscillator exposed to a temperature gradient in a three-dimensional phase space with coordinate q, momentum p, and thermostat control variable ζ. The second type simulates a conservative two-dimensional N-body fluid with 4N phase variables {q, p} undergoing shock compression. Despite the time-reversibility of each of the three oscillator equations and all of the 4N manybody motion equations both types of simulation are irreversible, obeying the Second Law of Thermodynamics. But for different reasons. The irreversible oscillator seeks out an attractive dissipative limit cycle. The likewise irreversible, but thoroughly conservative, Newtonian shockwave eventually generates a reversible near-equilibrium pair of rarefaction fans. Both problem types illustrate interesting features of Lyapunov instability. This instability results in the exponential growth of small perturbations, ∝ e λt where λ is a “Lyapunov exponent”.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.