Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ship resistance
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom S 1
80--84
EN
Data from model tests of an inland waterway vessel in shallow water have been used by the authors to prepare the resistance prediction in full scale. The common ITTC-1978 extrapolation procedure was applied using form factor determined according to the Prohaska method and, separately, by fitting the approximation function to resistance data. At the same time a series of CFD computations of ship flow has been carried out in model scale and in full scale, with double-body model as well as including the effect of free surface. The results of computations were used to determine total resistance and form factor. The values of form factor determined using different methods are similar and relatively high in comparison to values being applied to conventional sea going ships. Resistance prediction according to the ITTC-1978 with form factor was compared to prediction without form factor. The relative difference of resistance amounts 28% at ship speed of 10 km/h and 24% at ship speed of 12 km/h.
EN
On inland waterways the ship resistance and propulsive characteristics are strictly related to the depth of the waterway, thus it is important to have an understanding of the influence of water depth on ship hydrodynamic characteristics. Therefore, accurate predictions of hydrodynamic forces in restricted waterways are required and important. The aim of this paper is investigating the capability of the commercial unsteady Reynolds– Averaged Navier–Stokes (RANS) solver to predict the influence of water depth on ship resistance. The volume of fluid method (VOF) is applied to simulate the free surface flow around the ship. The hull resistance in shallow and deep water is compared. The obtained numerical results are validated against related experimental studies available in the literature.
EN
During ship design, its service speed is one of the crucial parameters that determine its future operational profitability. As sufficiently exact calculation methods applicable to preliminary design stage are lacking, the so-called contract speed, the speed a ship reaches in calm water, is usually specified during the draft stage. The service speed obtainable by a ship under real weather conditions (mainly wind and waves) is one of the most important parameters influencing a ship’s profitability on a given shipping route. This paper presents a parametric model of calculating total ship resistance on a given shipping route under actual weather conditions (wind, waves, sea current), that could be useful in the initial design of container ships.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.