Because of the importance of maintaining safety at sea, great training efforts are required to ensure that operators act safely in any ship. In such context, ship manoeuvring simulators are used to ease operators' learning experience. On the one hand, it may assist in the education of new operators by simulating equipment interfaces in a controlled and predictable scenario; on the other hand, it may simulate non-conventional scenarios to train advanced operators under stresses. As modelling spurious phenomena that yields marine equipment malfunctions is significantly complex, low-fidelity solutions have been proposed to the task. Likewise, the current work is concerned with the development of a low-fidelity radar module to train experienced operators under non-typical conditions. Particularly, this paper describes the radar implementation from the TPN-USP Manoeuvring Simulation Center and presents how simple additional effects may be modelled with considerable simplifications to ensure real-time performance. The implementation may be replicated in any ship manoeuvring simulator based on the game engine Unity3D.
Currently, ship operators (ship masters and pilots) are trained on ship simulators, either Full Mission Bridge (FMB) simulators, or Manned Model (MM) simulators. Both types of simulator increase an operator’s skill in manoeuvring a ship, and both incorporate the impact of hydrodynamic forces on the handling characteristics of a simulated ship. However, all forces affecting manoeuvring are the result of flow patterns that build up around the hull. These flow patterns may have extremely complex effects on many practical manoeuvres. Recent advances in hydrodynamic theory allow the impact of hydrodynamic forces on manoeuvrability to be simulated quite accurately so long as the simulated ship is moving straight ahead or performing standard manoeuvres. These advances also allow the simulation of such external influences as bank effects, shallow water effects, and canal effects, as well as the effect of the passage of other ships in the immediate vicinity. With a measure of simplification, these effects can be incorporated in FMB simulators. They can also be simulated by MM simulators provided both the models and training areas are properly prepared. As they are now, training simulators do not contribute to a trainee’s understanding of the way in which flow patterns develop or of the forces they create. This article discusses this deficiency and proposes a solution for it. Several examples of specific manoeuvring scenarios are used to illustrate the solution.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.