Odprowadzanie wód opadowych z obszarów zurbanizowanych stanowi coraz bardziej aktualny problem, związany m.in. z coraz szybszym i często niekontrolowanym rozwojem obszarów miejskich a także z brakiem urządzeń retencyjnych, współdziałających z siecią kanalizacyjną. Skutkuje to coraz częstszym występowaniem zjawisk podtapiania obszarów miejskich w czasie intensywnych opadów. Przeciążenie hydrauliczne sieci kanalizacyjnych to nie jedyny problem związany z odprowadzaniem ścieków opadowych.
The methods used in the practice of transferring of the excessive wastewater to the water receivers consist in gravitational outflow with the collector build in the section from water outflow point to the river. The cases of frequent flooding of the stormwater system caused by the lack of sufficient gravitational transfer often forced the users to build pumping stations. The overview of the used methods of stormwater transfer from the protected drainage basin to the water receiver in the periods of high filling levels did not reveal a solution which would be universal, reliable and widely used in the practice with small adaptive modifications. Therefore, the study discussed the problems of developing of the hydraulic solution for the method of transfer of the wastewater from precipitation to the water receiver to ensure unlimited, gravitational outflow in the periods of lower levels and medium filling states in the river (and forced transfer in the period of suddenly rising levels). The idea of these solutions consists in that the facilities of transfer of the stormwater to the water receiver should be located at the protected side of the drainage basin. These solutions would ensure the possibility of emergency repairs even if high filling levels were on the river. Their shape and the way they are embedded in the natural environment cannot negatively affect the landscape planning. Implementation of the retention reservoirs in the wastewater system is an essential component of the effective process of control of the outflow of the sludge from the drainage basin. It can be (and in many cases should be) supplemented with the components of the system that guarantee a considerable improvement in reliability of operation and ensure the appropriate efficiency of the assumed system of dewatering of the drainage basin. These components also include transfer reservoir, which adopt the responsibility for transfer of the wastewater from precipitation to water receivers e.g. rivers with high filling levels and also transfer of this wastewater from depressed land with respect to the elevated levels in river. Transfer reservoirs might also be used for moving a part or the whole flow of the wastewater to the drainage basin with lower filling levels in the areas of higher location with respect to the relieved drainage. Transfer reservoirs can also operate together with sewage treatment plants. One of solutions suggested in this case is that one of the transfer reservoirs transfers the wastewater flowing to the plant to the height demanded by the technological process, whereas after treatment, the second reservoir ensures its transfer to the receiver. Based on these conditions and problems, the authors developed new solution for transfer reservoirs. The present paper presents the design and principle of operation of one of these solutions.
W świetle prowadzonych o lat badań nad składem zanieczyszczeń ścieków opadowych, ich oczyszczanie przed wprowadzaniem do odbiornika okazuje się bezwzględnie konieczne. Stosowanie osadników i separatorów zawiesiny i substancji ropopochodnych na wylotach kolektorów deszczowych jest najczęściej w naszym kraju stosowaną metodą podczyszczania ścieków opadowych w znacznym stopniu ograniczającą według badań producentów ilość zanieczyszczeń wprowadzanych do wód powierzchniowych. Niniejszy artykuł zbiera badania ścieków opadowych prowadzone w różnych ośrodkach w kraju i zagranicą oraz prowadzone na Politechnice Białostockiej w ramach grantu KBN Nr 5 TO7E 015 24 (G/IIŚ/21/03).
W ogólnym wzorze na obliczanie spływu ścieków opadowych, niezależnie od stosowanych metod występuje współczynnik spływu (zarówno w metodzie granicznych natężeń jak i stałych natężeń) oraz współczynnik opóźnienia (w metodzie stałych natężeń). Współczynnik spływu jest przyjmowany na podstawie literatury zależnie od rodzaju i charakteru zlewni, najczęściej bez głębszej analizy. I trudno nie zgodzić się z Imhoffem [3], że nawet mała zmiana wartości współczynnika spływu bardziej wpływa na wynik końcowy niż inne parametry obliczeń. Warto więc poddać przyjmowane wartości współczynnika spływu wnikliwej analizie. W przypadku współczynnika opóźnienia, obliczanego najczęściej z wzoru Bürkli w metodzie stałych natężeń, o jego wartości decyduje wykładnik potęgi (stopień pierwiastka) (n), przyjmowany na podstawie kształtu i charakterystyki zlewni. Mając do dyspozycji najczęściej trzy wartości n (4, 6, 8) i bardzo nieprecyzyjne kryteria ich wyboru, trudno uznać otrzymywane na ich podstawie wartości spływu za satysfakcjonujące. Propozycja ich uszczegółowienia i dokładniejszego dostosowania do warunków lokalnych powinna poprawić dokładność obliczeń szczególnie, że metoda stałych natężeń stosowana do obliczeń przepływów w kanałach deszczowych jest oceniana przez specjalistów jako zaniżająca te przepływy w stosunku do metody granicznych natężeń. Tym zagadnieniom jest poświęcony niniejszy referat. Można uznać zaprezentowane w nim propozycje za dyskusyjne, ale warto poświęcić im nieco uwagi.
EN
In the general equation for calculation of storm sewage run-off, in each selected method there are: run-off coefficient (both in the method of border intensities and constant intensities) and delay coefficient (in the method of constant intensities). Run-off coefficient is accepted on the basis of literature depending on type and character of drainage area, most often without deeper analysis. And it is hard not to agree with Imhoff [3], that even small change of run-off coefficient change has bigger impact on final result than other parameters of calculations. So it is worth to thoroughly analyse accepted values of the coefficient. In the case of the delay coefficient (), calculated most often with Bürkli equa-tion in the method of constant intensities, its value is decided by index of power (degree of radical) (n), accepted on the basis of shape and characteristics of drainage area. Having to choose most often three values of n (4, 6, 8) and very imprecise criteria of their selection, it is hard to recognise obtained values of run-off on their basis as satisfying. The proposal of their more precise description and more exact accommodation to local conditions should improve accuracy of calculations, especially that method of constant intensities applied for calculations of flow in storm channels is estimated by experts as underrating those flows in relation to the method of border intensities. Present paper describes those issues. Proposal given in the paper may be considered as controversial, but it is worth to pay some attention to them. The consciousness of the results which in value of computational flow when designing storm channels bring accepting imprecise coefficient of run-off, not answering actual drainage area development, should cause larger care during accepting value of run-off coefficient. In every case it is necessary to analyse its value. Accuracy of determining of computational flows of storm channels, in the method of constant intensities certainly will improve utilization of proposal of higher selection of radical in Bürkli equation, more specific criteria of its accepting and better adaptation to dewatered drainage area development plan.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.