During ship sailing on a given shipping route in real weather conditions all propulsion system performance parameters of the ship change along with changes of instantaneous total resistance and speed of the ship. In this paper results of calculations are presented of distribution function and mean statistical values of screw propeller thrust, rotational speed and efficiency as well as propulsion engine power output and specific fuel oil consumption occurring on selected shipping routes at different SM values. On this basis new guidelines for ship propulsion system design procedure are formulated.
During ship sailing on a given shipping route in real weather conditions all propulsion system performance parameters of the ship change along with changes of instantaneous total resistance and speed of the ship. In this paper results of calculations are presented of distribution function and mean statistical values of screw propeller thrust, rotational speed and efficiency as well as propulsion engine power output and specific fuel oil consumption occurring on selected shipping routes at different service margin values. On this basis new guidelines for ship propulsion system design procedure are formulated.
Service speed obtainable by a ship in real weather conditions when sailing on a given shipping route, is one of the major parameters which have great impact on ship operation costs. The so far used, very approximate method of service speed prediction based on “service margin”, is very little exact. In this paper a new method based on additional ship resistance dependent on mean statistical parameters of wave and wind occurring on a given shipping route, is presented. The mean long-term service speed is calculated on the basis of the calculated additional resistance and the screw propeller and propulsion engine parameters. Also, a new definition of service margin and a way of its calculation is presented apart from the results of the mean service speed calculation depending on ship’s type and size and shipping route.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.