Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  separable
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
|
|
tom 146
|
nr 2
153-158
EN
Given two topologies, $T_1$ and $T_2$, on the same set X, the intersection topology} with respect to $T_1$ and $T_2$ is the topology with basis ${U_1 ∩ U_2 :U_1 ∈ T_1, U_2 ∈ T_2}$. Equivalently, T is the join of $T_1$ and $T_2$ in the lattice of topologies on the set X. Following the work of Reed concerning intersection topologies with respect to the real line and the countable ordinals, Kunen made an extensive investigation of normality, perfectness and $ω_1$-compactness in this class of topologies. We demonstrate that the majority of his results generalise to the intersection topology with respect to an arbitrary separable GO-space and $ω_1$, employing a well-behaved second countable subtopology of the separable GO-space.
2
84%
EN
In the realm of metric spaces we show in ZF that: (1) Quasi separability (a metric space X = (X, d) is quasi separable iff X has a dense subset which is expressible as a countable union of finite sets) is the weakest property under which a limit point compact metric space is compact. (2) ω-quasi separability (a metric space X = (X, d) is ω-quasi separable iff X has a dense subset which is expressible as a countable union of countable sets) is a property under which a countably compact metric space is compact. (3) The statement “Every totally bounded metric space is separable” does not imply the countable choice axiom CAC.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.