Different methods used to reduce temperature increase within the active region of vertical-external-cavity surface-emitting lasers (VECSELs) are described and compared with the aid of the self-consistent thermal finite-element method. Simulations have been carried out for the GaInNAs/GaAs multiple-quantum-well (MQW) VECSEL operating at room temperature at 1.31 µm. Main results are presented in form of "thermal maps" which can be simply used to determine maximal temperature of different structures at specified pumping conditions. It has been found that these maps are also appropriate for some other GaAs-based VECSELs and can be very helpful especially during structure designing. Moreover, convective and thermal radiation heat transfer from laser walls has been investigated.
The paper is devoted to a numerical analysis of an influence of a pumping beam diameter on output power of optically pumped vertical-external-cavity surface-emitting lasers. Simulations have been carried out for a structure with a GaInNAs/GaAs active region operating at 1.32 μm. Various assembly configurations have been considered. Results obtained show that laser power scaling is strongly affected by thermal properties of the device.
Different aspects of thermal management of GaAs-based vertical-external-cavity surface-emitting lasers (VECSELs) are described and analyzed by example of typical configurations of GaInNAs/GaAs multiple-quantum-well (MQW) VECSEL. Simulations of two-dimensional heat-flux spreading within investigated structures have been carried out with the aid of the self-consistent thermal finite-element method. Influence of pumping-beam and heat spreader properties on maximal temperature increase have been studied and different heat management techniques have been compared.
PL
W pracy zostały opisane i przeanalizowane wybrane aspekty dotyczące własności cieplnych optycznie pompowanych laserów półprzewodnikowych o emisji powierzchniowej z zewnętrzną pionową wnęką rezonansową (VECSELs, ang. vertical-external-cavity surface-emitting lasers) na podłożu z GaAs. Obliczenia wykonano dla typowych konfiguracji montażowych lasera typu VECSEL z obszarem czynnym w postaci wielokrotnej studni kwantowej wykonanej w systemie materiałowym GaInNAs/GaAs. Do symulacji dwuwymiarowego rozpływu ciepła wykorzystano samouzgodniony model cieplny oparty na metodzie elementów skończonych (MES) , przy pomocy którego porównano własności cieplne poszczególnych struktur oraz określono wpływ parametrów wiązki pompującej (moc, średnica) i heat spreadera (przewodność cieplna, grubość) na maksymalny przyrost temperatury w ich wnętrzach.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.